Raio-X da inflação brasileira usando o R

Na próxima quinta-feira, às 20h, eu farei uma aula ao vivo sobre estratégias de previsão da inflação mensal medida pelo IPCA. A aula faz parte do lançamento do nosso novo Curso de Previsão Macroeconométrica usando o R. Para garantir sua presença na aula, coloque seu nome na lista aqui para ser avisado. Nesse Comentário de Conjuntura, a propósito, fazemos um raio-x da inflação brasileira, tendo por foco o IPCA. O código completo está disponível para os membros do Clube AM.

Para começar, nós carregamos os pacotes de R que utilizaremos.


library(tidyverse)
library(readxl)
library(sidrar)
library(forecast)
library(tstools)
library(scales)
library(ggrepel)
library(BETS)
library(xtable)
library(lubridate)
library(RcppRoll)
library(knitr)
library(fpp3)
library(xts)
library(reshape2)
library(rbcb)

Com os pacotes carregados, podemos coletar os dados diretamente do SIDRA/IBGE para o RStudio com o código abaixo. Já aproveito para criar a inflação mensal e a inflação acumulada em 12 meses.


## Criar Inflação mensal e acumulada em 12 meses
ipca_indice = 
'/t/1737/n1/all/v/2266/p/all/d/v2266%2013' %>%
get_sidra(api=.) %>%
mutate(date = ymd(paste0(`Mês (Código)`, '01'))) %>%
select(date, Valor) %>%
mutate(mensal = round((Valor/lag(Valor, 1)-1)*100, 2),
anual = round((Valor/lag(Valor, 12)-1)*100, 2))

Como o índice pega toda a hiperinflação da década de 80, nós pegamos uma janela a partir de 2007 com o código a seguir.


## Criar amostra
ipca_subamostra = ipca_indice %>%
filter(date >= as.Date('2007-06-01'))

Uma tabela com os últimos resultados é colocada abaixo.

date Valor mensal anual
159 2020-08-01 5357.46 0.24 2.44
160 2020-09-01 5391.75 0.64 3.14
161 2020-10-01 5438.12 0.86 3.92
162 2020-11-01 5486.52 0.89 4.31
163 2020-12-01 5560.59 1.35 4.52
164 2021-01-01 5574.49 0.25 4.56

Os gráficos do número índice e da inflação mensal e acumulada em 12 meses são colocados abaixo.


Podemos dar um zoom na inflação mensal, como abaixo.

Uma análise estatística da inflação pode ser feita, a começar pelas estatísticas descritivas do nosso dataset.

date Valor mensal anual
Min. :2007-06-01 Min. :2669 Min. :-0.3800 Min. : 1.880
1st Qu.:2010-10-24 1st Qu.:3169 1st Qu.: 0.2500 1st Qu.: 4.190
Median :2014-03-16 Median :3911 Median : 0.4300 Median : 5.250
Mean :2014-03-17 Mean :4017 Mean : 0.4522 Mean : 5.473
3rd Qu.:2017-08-08 3rd Qu.:4855 3rd Qu.: 0.6025 3rd Qu.: 6.492
Max. :2021-01-01 Max. :5574 Max. : 1.3500 Max. :10.710

A seguir, podemos ver uma característica bastante conhecida da inflação que é a sua sazonalidade.

A seguir, nós vemos o boxplot e o histograma da inflação mensal medida pelo IPCA.

Na sequência, nós podemos importar os núcleos de inflação criados e acompanhados pelo Banco Central.


## Pegar núcleos
series = c(ipca_ex2 = 27838,
ipca_ex3 = 27839,
ipca_ms = 4466,
ipca_ma = 11426,
ipca_ex0 = 11427,
ipca_ex1 = 16121,
ipca_dp = 16122)

nucleos = get_series(series, start_date = '2006-07-01') %>%
purrr::reduce(inner_join)

Com os dados dos núcleos disponíveis, nós podemos criar um gráfico como abaixo.

A despeito do avanço da inflação cheia, a média dos sete núcleos do Banco Central ainda se situa abaixo da meta de inflação. A seguir, ilustramos todos os sete núcleos.

Como é possível ver pelo gráfico, todos os sete núcleos situam-se abaixo da meta de inflação, que esse ano é de 3,75%. Na sequência, vemos cada um dos sete grupos, na sua variação mensal.

E a variação acumulada em 12 meses.

Os núcleos de inflação são importantes para expurgar choques que ocorrem sobre o índice cheio. O que se vê pelos gráficos acima é que, de fato, os núcleos ainda estão mais comportados do que a inflação cheia, mas na margem, houve sim uma contaminação.

Outra informação importante é a difusão da inflação, isto é, o percentual de subitens que teve variação positiva no mês. Pelo gráfico acima, é possível ver que na margem há um avanço da difusão, já considerando uma média móvel de 12 meses dos dados.

Na sequência, nós podemos ver a contribuição dos 9 grupos para a inflação cheia. Os dados são coletados diretamente do SIDRA/IBGE.


## Baixar e tratar os dados
variacao =
'/t/7060/n1/all/v/63/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v63%202' %>%
get_sidra(api=.) %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Geral, grupo, subgrupo, item e subitem", Valor) %>%
pivot_wider(names_from = "Geral, grupo, subgrupo, item e subitem",
values_from = Valor)

peso =
'/t/7060/n1/all/v/66/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v66%204' %>%
get_sidra(api=.) %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Geral, grupo, subgrupo, item e subitem", Valor) %>%
pivot_wider(names_from = "Geral, grupo, subgrupo, item e subitem",
values_from = Valor)

contribuicao = (variacao[,-1]*peso[,-1]/100) %>%
mutate(date = variacao$date) %>%
select(date, everything())

Na sequência, geramos um gráfico com a variação mensal dos nove grupos.

Como se vê, houve um aumento considerável do grupo Alimentação e bebidas ao longo de 2020, o que contribuiu de forma peremptória para o avanço da inflação ao longo daquele ano. Na sequência, colocamos a contribuição de cada um dos grupos para a inflação mensal.

O gráfico acima ilustra a contribuição do grupo Alimentação e bebidas para a inflação mensal ao longo de 2020. A seguir, baixamos as classificações do IPCA diretamente do Banco Central.


series = c('Comercializáveis' = 4447,
'Não Comercializáveis' = 4448,
'Monitorados' = 4449,
'Não Duráveis' = 10841,
'Semi-Duráveis' = 10842,
'Duráveis' = 10843,
'Serviços' = 10844,
'Livres' = 11428)

classificacoes_ipca = get_series(series, start_date = '2007-01-01') %>%
purrr::reduce(inner_join)

Um gráfico com a variação acumulada em 12 meses é colocado abaixo.

Há uma assimetria entre as classificações do IPCA. Enquanto os preços livres tiveram um avanço nos últimos anos, os monitorados e não comercializáveis seguiram trajetória contrária. Na margem, contudo, essas classificações também mostram algum repique.

Para terminar esse `Raio-x da inflação brasileira`, vamos passar rapidamente pelos Índices Gerais de Preço (IGPs), construídos e divulgados mensalmente pela Fundação Getúlio Vargas. Os (IGPs) são formados por três índices: Índice de Preços por Atacado (IPA), Índice de Preço ao Consumidor (IPC) e Índice Nacional de Custo da Construção Civil (INCC). São divididos por período de coleta em IGP-10, IGP-M e IGP-DI.

Os números-índices do IGP-10, IGP-M e IGP-DI podem ser obtidos aplicando a seguinte fórmula no \mathbf{R}:

(1)   \begin{equation*} IGP_{i,t}=0,6*IPA_{i,t}+0,3*IPC_{i,t}+0,1*INCC_{i,t} \end{equation*}

Onde i pode ser 10, M ou DI.

O código a seguir pega os dados diretamente do Banco Central.


series = list('IGP-M'=189, 'IGP-DI'=190, 'IGP-10'=7447, 'IPC-Br'=191,
'INCC'=192, 'IPA'=225)

indices_gerais = get_series(series, start_date = '2007-01-01') %>%
purrr::reduce(inner_join) %>%
gather(variavel, valor, -date)

Na sequência, colocamos um gráfico que mostra os índices gerais e seus componentes no acumulado em 12 meses.

Como se vê, houve um salto no IPA, o índice de preços no atacado. Como o mesmo representa 60% dos índices gerais, houve um salto grande nesses índices ao longo de 2020. A tabela abaixo mostra a correlação entre os índices gerais, seus componentes e o IPCA.

IGP-10 IGP-DI IGP-M INCC IPA IPC-Br IPCA
IGP-10 1.0000000 0.9839832 0.9961309 0.4423330 0.9714577 0.2969412 0.3105496
IGP-DI 0.9839832 1.0000000 0.9947883 0.3984862 0.9930553 0.2648717 0.2771306
IGP-M 0.9961309 0.9947883 1.0000000 0.4198252 0.9855453 0.2778136 0.2909590
INCC 0.4423330 0.3984862 0.4198252 1.0000000 0.3182797 0.4864669 0.5081419
IPA 0.9714577 0.9930553 0.9855453 0.3182797 1.0000000 0.1571463 0.1702913
IPC-Br 0.2969412 0.2648717 0.2778136 0.4864669 0.1571463 1.0000000 0.9866917
IPCA 0.3105496 0.2771306 0.2909590 0.5081419 0.1702913 0.9866917 1.0000000

Para terminar, então, mostramos o gap entre o IPA e o IPCA no gráfico abaixo.

Membros do Clube AM têm acesso a todos os resultados dessas pesquisas, que contam com scripts automáticos ensinados no nosso Curso de Análise de Conjuntura usando o R.

_______________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.