O risco fiscal

O mercado se volta para o risco fiscal presente no aumento das necessidades de financiamento do setor público (fluxo) e, consequentemente, para o aumento do endividamento. Diante da forte reação de política pública, em particular pela criação e operacionalização do auxílio emergencial, houve, de fato, uma deterioração adicional nas contas públicas. Para dar uma olhada nos dados, como ensino no nosso Curso de Análise de Conjuntura usando o R, podemos começar carregando alguns pacotes no R, como abaixo.

1
2
3
4
5
6
7
8
9
library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)
library(GetTDData)
library(ecoseries)
library(RColorBrewer)
library(rbcb)

Carregados os pacotes, podemos começar pegando os dados de endividamento, como abaixo.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
dlsp = get_series(4513)
 
ggplot(dlsp, aes(x=date, y=`4513`))+
geom_line(size=.8)+
labs(x='', y='% PIB',
title='Dívida Líquida do Setor Público',
caption='Fonte: analisemacro.com.br com dados do BCB')
 
dbgg = get_series(13762) %>%
drop_na()
 
ggplot(dbgg, aes(x=date, y=`13762`))+
geom_line(size=.8)+
labs(x='', y='% PIB',
title='Dívida Bruta do Govero Geral',
caption='Fonte: analisemacro.com.br com dados do BCB')

A Dívida Bruta do Governo Geral chegou a 88,8% em agosto e a Dívida Líquida fechou em 60,7%, como pode ser visto abaixo.


Essa deterioração nas métricas de endividamento, por óbvio, é resultado direto da piora do fluxo, isto é, das necessidades de financiamento do setor público. A seguir, ilustro.

1
2
3
4
5
6
7
8
primario = get_series(5793) %>%
drop_na()
 
ggplot(primario, aes(x=date, y=`5793`))+
geom_line(size=.8)+
labs(x='', y='% PIB',
title='Necessidades de Financiamento do Setor Público',
caption='Fonte: analisemacro.com.br com dados do BCB')

As contas públicas se tornaram uma bomba relógio prestes a explodir. E ainda não tiveram maior impacto sobre o risco-país e sobre o custo de captação do Tesouro porque o Teto de Gastos ainda se mantém de pé. Sem o teto, é questão de tempo para que o mercado precifique o default brasileiro. 

____________________

*) Para ter acesso aos códigos completos do exercício, cadastre-se na nossa Lista VIP aqui.

(**) Inscrições abertas para as Turmas Especiais dos nossos Cursos de Macro Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Frameworks para criar AI Agents

Neste post, vamos dar o primeiro passo rumo à construção de Agentes de IA mais sofisticados, capazes de tomar decisões, interagir com ferramentas externas e lidar com tarefas complexas. Para isso, precisamos entender o papel dos frameworks agenticos (ou agentic frameworks) e como eles podem facilitar esse processo. Aqui introduzimos dois frameworks populares de desenvolvimento de Agentes de IA.

Construindo RAG para Análise do COPOM com SmolAgents

Este exercício demonstra, passo a passo, como aplicar o conceito de Retrieval-Augmented Generation (RAG) com agentes inteligentes na análise de documentos econômicos. Utilizando a biblioteca SmolAgents, desenvolvemos um agente capaz de interpretar e responder a perguntas sobre as atas do COPOM com base em buscas semânticas.

Como criar um Agente de IA?

Unindo conhecimentos sobre Tools, LLMs e Vector Stores, agora é hora de integrar diferentes conceitos e aprender a construir um Agente de IA completo. Neste post, nosso objetivo será criar um Agente capaz de responder perguntas sobre o cenário macroeconômico brasileiro, utilizando dados de expectativas de mercado do Boletim Focus do Banco Central do Brasil (BCB) e o framework LangChain no Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!