Uma análise estatística do IPCA-15

Hoje, o IBGE divulga o IPCA-15, Índice de Preços ao Consumidor Amplo 15, que busca medir a inflação em geral do dia 16 do mês anterior ao 15 do mês de referência, seguindo de resto a mesma metodologia do IPCA. Aproveito a divulgação do índice para mostrar algumas coisas interessantes que vemos no curso de Introdução à Estatística usando o R em relação à construção de estatísticas descritivas análise exploratória de dados de uma determinada variável.

Para começar, pegamos os dados através do pacote sidrar:


library(sidrar)
ipca15 = get_sidra(api='/t/3065/n1/all/v/355/p/all/d/v355%202')

E abaixo visualizamos a nossa série.

Esse tipo de gráfico, a propósito, é feito com de forma customizada com o pacote ggplot2, que eu ensino no nosso Curso de Análise de Conjuntura usando o R. Uma vez que visualizamos a série, podemos notar uma característica importante dela: a existência de sazonalidade. Podemos explorar essa característica com o gráfico abaixo.

O IPCA-15, assim como o IPCA, apresenta uma sazonalidade bastante pronunciada. A inflação medida pelo índice cai ao longo do primeiro semestre e aumenta ao longo do segundo, de acordo, a propósito, com a produção ao longo do ano.

Uma vez identificada essa característica, podemos nos concentrar nas estatísticas descritivas da série. Uma forma simples de visualizar as principais métricas, podemos construir um boxplot da série.

Observe que a mediana do IPCA-15 é de 0,46 e a média é de 0,51. Isso diz alguma coisa sobre a forma de distribuição da série, que podemos visualizar através de um histograma.

Isto é, temos uma assimetria à direita. O valor mínimo da série é, a propósito, de -0,18 e o máximo de 3.05, para um IQR de 0,39. Em outros termos, o primeiro quartil termina em 0,27 e o terceiro quartil em 0,66.

Em assim sendo, o intervalo mais provável de observações do IPCA-15 se situa entre 0,27 e 0,66, centrado em 0,46.

Esse tipo de análise descritiva dos dados serve, por fim, de preâmbulo para qualquer esforço de modelagem e previsão que poderíamos fazer em relação à nossa série.

_________________________________

Update: O script do exercício está disponível aqui. Um vídeo sobre como feito o post pode ser visto no Canal da AM no Youtube.

 

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.