Crédito Livre vs. Crédito Direcionado no Brasil

O crédito direcionado, aquele que é administrado por bancos públicos e possui subsídios importantes envolvidos na sua intermediação, ainda é bastante relevante no mercado de crédito brasileiro. Para ilustrar, como ensinamos em nosso Curso de Análise de Conjuntura usando o R, vamos coletar os dados referentes a crédito diretamente do Banco Central com o R.

Para isso, nós utilizamos o pacote rbcb, como abaixo.


library(rbcb)
library(tidyverse)
library(zoo)
library(scales)

series = list('livres'= 20542,
'direcionado' = 20593)

data = get_series(series) %>%
reduce(inner_join) %>%
mutate(total = livres + direcionado,
'Crédito Livre' = livres/total*100,
'Crédito Direcionado' = direcionado/total*100) %>%
select(date, 'Crédito Livre', 'Crédito Direcionado') %>%
gather(variavel, valor, -date)

No código acima, nós estamos basicamente pegando os dados do crédito livre, aquele que é intermediado sem subsídios e o crédito direcionado que falamos acima. A partir das séries coletadas, nós podemos criar as taxas de crédito livre e de crédito direcionado a partir do estoque total de crédito. Com efeito, podemos gerar o gráfico abaixo.

A despeito da mudança na estrutura da taxa de juros que regula os empréstimos do BNDES, parte importante do estoque de crédito direcionado, o mesmo ainda responde por mais de 40% do total de crédito no Brasil.

__________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Aplicando o Time Series Transformer para prever inflação (IPCA)

Neste exercício, exploramos a previsão de séries temporais utilizando o Temporal Fusion Transformer (TFT). O TFT é uma arquitetura de Deep Learning baseada em mecanismos de atenção, desenhada especificamente para lidar com múltiplas variáveis e horizontes de previsão longos, mantendo a interpretabilidade — uma característica frequentemente ausente em modelos de "caixa-preta".

Análise do Payroll norte-americano com Python

O Payroll norte-americano é o termômetro da economia global. No post de hoje, mostro como analisar esse indicador usando Python e as bibliotecas Pandas e Plotnine. Saia do básico e aprenda a visualizar a geração de empregos nos EUA de forma profissional.

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.