Crédito Livre vs. Crédito Direcionado no Brasil

O crédito direcionado, aquele que é administrado por bancos públicos e possui subsídios importantes envolvidos na sua intermediação, ainda é bastante relevante no mercado de crédito brasileiro. Para ilustrar, como ensinamos em nosso Curso de Análise de Conjuntura usando o R, vamos coletar os dados referentes a crédito diretamente do Banco Central com o R.

Para isso, nós utilizamos o pacote rbcb, como abaixo.


library(rbcb)
library(tidyverse)
library(zoo)
library(scales)

series = list('livres'= 20542,
'direcionado' = 20593)

data = get_series(series) %>%
reduce(inner_join) %>%
mutate(total = livres + direcionado,
'Crédito Livre' = livres/total*100,
'Crédito Direcionado' = direcionado/total*100) %>%
select(date, 'Crédito Livre', 'Crédito Direcionado') %>%
gather(variavel, valor, -date)

No código acima, nós estamos basicamente pegando os dados do crédito livre, aquele que é intermediado sem subsídios e o crédito direcionado que falamos acima. A partir das séries coletadas, nós podemos criar as taxas de crédito livre e de crédito direcionado a partir do estoque total de crédito. Com efeito, podemos gerar o gráfico abaixo.

A despeito da mudança na estrutura da taxa de juros que regula os empréstimos do BNDES, parte importante do estoque de crédito direcionado, o mesmo ainda responde por mais de 40% do total de crédito no Brasil.

__________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Frameworks para criar AI Agents

Neste post, vamos dar o primeiro passo rumo à construção de Agentes de IA mais sofisticados, capazes de tomar decisões, interagir com ferramentas externas e lidar com tarefas complexas. Para isso, precisamos entender o papel dos frameworks agenticos (ou agentic frameworks) e como eles podem facilitar esse processo. Aqui introduzimos dois frameworks populares de desenvolvimento de Agentes de IA.

Construindo RAG para Análise do COPOM com SmolAgents

Este exercício demonstra, passo a passo, como aplicar o conceito de Retrieval-Augmented Generation (RAG) com agentes inteligentes na análise de documentos econômicos. Utilizando a biblioteca SmolAgents, desenvolvemos um agente capaz de interpretar e responder a perguntas sobre as atas do COPOM com base em buscas semânticas.

Como criar um Agente de IA?

Unindo conhecimentos sobre Tools, LLMs e Vector Stores, agora é hora de integrar diferentes conceitos e aprender a construir um Agente de IA completo. Neste post, nosso objetivo será criar um Agente capaz de responder perguntas sobre o cenário macroeconômico brasileiro, utilizando dados de expectativas de mercado do Boletim Focus do Banco Central do Brasil (BCB) e o framework LangChain no Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.