Visualizando o Efeito Trump no Câmbio com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

No último dia 09/11, o mundo tomou um susto: Donald Trump foi eleito presidente dos Estados Unidos. Contrariando praticamente todas as previsões de estatísticos, jornalistas, economistas, cientistas políticos, enfim, todos os envolvidos na cobertura da eleição norte-americana. O agora denominado efeito Trump tem sido sentido em diversos mercados. Para ficar em um exemplo, vamos ilustrar esse efeito sobre a taxa de câmbio R$/US$ usando para isso o pacote quantmod do R. Vamos, assim, pegar a taxa de câmbio diretamente de uma base de dados on-line para o R, da forma abaixo.

library(quantmod)
getFX('USD/BRL', from='2016-10-01')

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2016/11/trump.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/analise-de-conjuntura/" url_new_window="off" use_overlay="off" animation="left" sticky="off" align="left" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"] [/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="Linha"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

Uma vez que tenhamos a série, vamos fazer um gráfico que chame atenção para o período recente, isto é, para o período a partir de 09/11, quando Trump foi eleito. Isso é feito com o pacote ggplot2, como abaixo.

library(ggplot2)
library(ggthemes)

autoplot(USDBRL)+
 xlab('')+
 ylab('')+
 ggtitle('Efeito Trump na Taxa de Câmbio R$/US$ Diária')+
 geom_line(colour='darkblue', size=.8)+
 theme_stata()+
 annotate("rect", fill = "gray80", alpha = 0.5, 
 xmin = as.Date('2016-11-09'), 
 xmax=as.Date('2016-11-11'),
 ymin = -Inf, ymax = Inf)

E agora o gráfico...

trump

A área sombreada representa o efeito Trump. A taxa de câmbio saiu de 3,19 R$/US$ no dia 09/11 para 3,41 R$/US$ no dia 14/11. E você soube disso sem abrir o Excel... 🙂

[/et_pb_text][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/analise-de-conjuntura/" url_new_window="off" button_text="Venha aprender R conosco!" button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.