Analisando dados da Pesquisa Mensal de Serviços com o Python

A Pesquisa Industrial Mensal - Produção Física (PIM) é um dos principais indicadores de acompanhamento do setor de serviços no Brasil, e é extremamente útil para entender o comportamento conjuntural da economia do país. No post de hoje, mostramos como é possível utilizar o Python para criar uma breve análise do indicador.

O indicador pode ser buscado através do Sidra, repositório de acesso de dados das pesquisas realizados pelo IBGE. É extremamente fácil de realizar a importação de dados do Sidra através do Python, no qual ensinamos todos os passos através do Clube AM, onde disponibilizamos o código e o vídeo comentado. Também ensinamos toda a teoria e prática da Análise da PMS no curso Análise de Conjuntura usando o R.

Abaixo, temos o gráfico da variação acumulada em 12 meses do indicador desde 2011, demonstrando os caminhos percorridos pelo Setor de Serviços. É visível a queda do indicador proporcionada pela pandemia de Coronavírus em 2020, e a subsequente recuperação, apesar da queda na ponta.

É possível criar diversos estilos de gráficos, computando a variação interanual, marginal e acumulada no ano. A devida coleta reprodutível também permite a criação de modelos de previsões totalmente automatizados.

________________________________________

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como tratar dados no Python? Parte 5: renomeando colunas

Como dar novos nomes significativos para as colunas em uma tabela de dados usando Python? Neste tutorial mostramos os métodos de renomeação de colunas disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Como tratar dados no Python? Parte 4: operações por grupos

Como mensalizar dados diários? Ou como filtrar os valores máximos para diversas categorias em uma tabela de dados usando Python? Estas perguntas são respondidas com os métodos de operações por grupos. Neste tutorial mostramos estes métodos disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.