Analisando dados da Pesquisa Mensal de Serviços com o Python

A Pesquisa Industrial Mensal - Produção Física (PIM) é um dos principais indicadores de acompanhamento do setor de serviços no Brasil, e é extremamente útil para entender o comportamento conjuntural da economia do país. No post de hoje, mostramos como é possível utilizar o Python para criar uma breve análise do indicador.

O indicador pode ser buscado através do Sidra, repositório de acesso de dados das pesquisas realizados pelo IBGE. É extremamente fácil de realizar a importação de dados do Sidra através do Python, no qual ensinamos todos os passos através do Clube AM, onde disponibilizamos o código e o vídeo comentado. Também ensinamos toda a teoria e prática da Análise da PMS no curso Análise de Conjuntura usando o R.

Abaixo, temos o gráfico da variação acumulada em 12 meses do indicador desde 2011, demonstrando os caminhos percorridos pelo Setor de Serviços. É visível a queda do indicador proporcionada pela pandemia de Coronavírus em 2020, e a subsequente recuperação, apesar da queda na ponta.

É possível criar diversos estilos de gráficos, computando a variação interanual, marginal e acumulada no ano. A devida coleta reprodutível também permite a criação de modelos de previsões totalmente automatizados.

________________________________________

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como avaliar modelos de IA na previsão macroeconômica?

Descubra como economistas e cientistas de dados estão combinando econometria e inteligência artificial para aprimorar previsões macroeconômicas. Neste post, você vai entender as principais etapas de avaliação de modelos — da preparação dos dados à validação cruzada — e conhecer as métricas e técnicas que revelam quais métodos realmente entregam as melhores previsões. Uma leitura essencial para quem quer compreender o futuro da análise econômica orientada por dados.

Análise exploratória e seleção de séries temporais econômicas para modelagem

Quer entender como transformar dados econômicos brutos em previsões macroeconômicas precisas? Neste post, mostramos passo a passo como realizar a análise exploratória e seleção de séries temporais com Python — desde o tratamento de dados e remoção de multicolinearidade até a escolha das variáveis mais relevantes usando técnicas de machine learning e econometria. Um guia essencial para quem quer unir teoria econômica e inteligência artificial na prática da previsão macroeconômica.

Transformers para Análise de Séries Temporais

Neste tutorial, mostramos passo a passo como aplicar dados de séries temporais em modelos baseados na arquitetura Transformer, utilizando a biblioteca Darts no Python. Você aprenderá como transformar dados temporais em um formato compatível, ajustar o modelo e gerar previsões. Uma introdução prática e didática à união entre Deep Learning e análise de séries temporais.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.