Análise da Produção Industrial no Python

A Pesquisa Mensal da Indústria (PIM-PF) é um dos principais indicadores de acompanhamento do produto real das indústrias extrativa e de transformação, e é extremamente útil para entender o comportamento conjuntural da economia do país. No post de hoje, mostramos como é possível utilizar o Python para criar uma breve análise do indicador.

Através da PIM-PF é possível averiguar o volume de bens produzidos pelo setor industrial do país. Ao construir cálculos de variações do volume, é possível entender a conjuntura do país.

O indicador pode ser buscado através do Sidra, repositório de acesso de dados das pesquisas realizados pelo IBGE. É extremamente fácil de realizar a importação de dados do Sidra através do Python, no qual ensinamos todos os passos através do Clube AM, onde disponibilizamos o código e o vídeo comentado. Também ensinamos toda a teoria e prática da Análise da PIM-PF no curso Análise de Conjuntura usando o R.

Abaixo, temos o gráfico da variação acumulada em 12 meses do indicador desde 2002.

________________________________________

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Faça parte também do nosso grupo especial de compartilhamento de códigos Clube AM

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.