Análise da Produção Industrial no Python

A Pesquisa Mensal da Indústria (PIM-PF) é um dos principais indicadores de acompanhamento do produto real das indústrias extrativa e de transformação, e é extremamente útil para entender o comportamento conjuntural da economia do país. No post de hoje, mostramos como é possível utilizar o Python para criar uma breve análise do indicador.

Através da PIM-PF é possível averiguar o volume de bens produzidos pelo setor industrial do país. Ao construir cálculos de variações do volume, é possível entender a conjuntura do país.

O indicador pode ser buscado através do Sidra, repositório de acesso de dados das pesquisas realizados pelo IBGE. É extremamente fácil de realizar a importação de dados do Sidra através do Python, no qual ensinamos todos os passos através do Clube AM, onde disponibilizamos o código e o vídeo comentado. Também ensinamos toda a teoria e prática da Análise da PIM-PF no curso Análise de Conjuntura usando o R.

Abaixo, temos o gráfico da variação acumulada em 12 meses do indicador desde 2002.

________________________________________

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Faça parte também do nosso grupo especial de compartilhamento de códigos Clube AM

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar um Agente de IA visualizador de dados

A criação de agentes de Inteligência Artificial (IA) capazes de transformar dados brutos em visualizações claras e informativas está se tornando cada vez mais acessível. Esses agentes podem automatizar tarefas complexas, desde a coleta de dados de diversas fontes até a geração de gráficos e tabelas, permitindo que os usuários foquem na análise e na tomada de decisões. Este post explora o processo de construção de um agente de IA para visualização de dados, destacando as ferramentas e os conceitos fundamentais envolvidos.

Criando um Simples Assistente de Pesquisa com LangGraph

O exercício utiliza o LangGraph para criar personas fictícias de analistas econômicos, entrevistá-las com um especialista fictício e, a partir dessas interações, gerar relatórios técnicos usando LLMs, buscas na web e execução paralela.

Construindo Corrective RAG (CRAG) com LangGraph

Este post explica o conceito de Agentic CRAG (Corrective Retrieval-Augmented Generation) e sua aplicação na análise das atas do COPOM. Mostramos como combinar recuperação de informações, avaliação de relevância, correção de consultas e busca externa em um fluxo estruturado com LangGraph.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.