Coletando dados da SELIC com o Python

A Selic é a taxa básica de juros da economia brasileira, configurando-se como um dos principais instrumentos de política monetária no país. Neste post de hoje, mostramos como é possível obter os dados da Taxa Selic Meta utilizando o Python.

Para obter os dados da Taxa Selic Meta, é necessário utilizarmos a biblioteca {python-bcb}, em conjunto com seu módulo sgs, de forma que possamos importar os dados do Sistema Gerenciador de Séries Temporais do Banco Central (SGS).

Portanto, iremos instalar e carregar as bibliotecas necessárias.

Em seguida, devemos buscar o código da série da Taxa Meta Selic no site do SGS, que é disponibilizado pelo código 432. Com o código em mãos, utilizamos a função sgs.get(), com argumentos 'selic' (para o nome da coluna no data frame importado) e '432', referente ao código para a importação. Veja que configuramos um período de início, a partir de 2010.

Será importado um Data Frame, no qual poderemos realizar manipulações e visualizações.

________________________________________

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Otimizando um Portfólio de Investimentos com Machine Learning

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Como usar IA + Python para o Mercado Financeiro?

Neste post, mostramos como a Inteligência Artificial, aliada à linguagem Python, está revolucionando o mercado financeiro. Exploramos as principais áreas onde essa tecnologia pode ser aplicada — como gestão de carteiras, análise de demonstrações contábeis, estratégias quantitativas, trading e análise macroeconômica — com foco em aplicações práticas e exemplos voltados para o contexto brasileiro.

Como otimizar um portfólio de investimentos no Python?

Este post apresenta, de forma prática e didática, como aplicar o modelo de otimização de carteiras de Markowitz utilizando Python. A partir de dados reais de ações brasileiras, mostramos como calcular retornos, medir riscos e encontrar a combinação ótima de ativos com base nas preferências de risco do investidor. Utilizamos a biblioteca Riskfolio-Lib para estruturar a análise e gerar gráficos como o conjunto de oportunidades e a fronteira eficiente.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.