Coletando dados da SELIC com o Python

A Selic é a taxa básica de juros da economia brasileira, configurando-se como um dos principais instrumentos de política monetária no país. Neste post de hoje, mostramos como é possível obter os dados da Taxa Selic Meta utilizando o Python.

Para obter os dados da Taxa Selic Meta, é necessário utilizarmos a biblioteca {python-bcb}, em conjunto com seu módulo sgs, de forma que possamos importar os dados do Sistema Gerenciador de Séries Temporais do Banco Central (SGS).

Portanto, iremos instalar e carregar as bibliotecas necessárias.

Em seguida, devemos buscar o código da série da Taxa Meta Selic no site do SGS, que é disponibilizado pelo código 432. Com o código em mãos, utilizamos a função sgs.get(), com argumentos 'selic' (para o nome da coluna no data frame importado) e '432', referente ao código para a importação. Veja que configuramos um período de início, a partir de 2010.

Será importado um Data Frame, no qual poderemos realizar manipulações e visualizações.

________________________________________

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como avaliar modelos de IA na previsão macroeconômica?

Descubra como economistas e cientistas de dados estão combinando econometria e inteligência artificial para aprimorar previsões macroeconômicas. Neste post, você vai entender as principais etapas de avaliação de modelos — da preparação dos dados à validação cruzada — e conhecer as métricas e técnicas que revelam quais métodos realmente entregam as melhores previsões. Uma leitura essencial para quem quer compreender o futuro da análise econômica orientada por dados.

Análise exploratória e seleção de séries temporais econômicas para modelagem

Quer entender como transformar dados econômicos brutos em previsões macroeconômicas precisas? Neste post, mostramos passo a passo como realizar a análise exploratória e seleção de séries temporais com Python — desde o tratamento de dados e remoção de multicolinearidade até a escolha das variáveis mais relevantes usando técnicas de machine learning e econometria. Um guia essencial para quem quer unir teoria econômica e inteligência artificial na prática da previsão macroeconômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.