Coletando dados das Estatísticas Fiscais com o Python

A Política Fiscal possui papel significativo na política econômica de um país, atuando na provisão de bens públicos, na minimização de recessões econômicas e como fonte de redistribuição de renda. Portanto, é necessário a compreensão dos principais indicadores fiscais do país, realizando uma análise de dados dessas estatísticas de forma a entender a conjuntura econômica. Neste post de hoje, ensinaremos a capturar os dados do resultado nominal, juros nominal e do resultado primário do Brasil utilizando o Python.

Para exercer uma politica fiscal, um governo necessita de instrumentos do lado da despesa (gasto público) e da receita (arrecadação tributária). Do confronto entre esses dois indicadores, é possível entender se um país, em determinado período, incorreu de superávits ou déficits, cada qual possuindo uma implicação e efeitos em outras variáveis macroeconômicas de curto e longo prazo.

Para averiguar os resultados fiscais do Brasil, podemos buscar as Estatísticas Fiscais disponibilizadas pelo Banco Central. É através do banco de dados da entidade que obteremos os resultados do Setor Público Consolidado (governo central, isto é, formado pelo governo federal, estados, munícipios e estatais). Dentre os indicadores que buscaremos, serão:

  • Resultado nominal - Total - Setor público consolidado (sem desvalorização cambial): representa a variação nominal dos saldos da dívida liquida, fornecendo também informações sobre o confronto entre receitas e despesas totais, ou seja, se houve superávit ou déficit.
  • Juros Nominais - Total - Setor público consolidado (sem desvalorização cambial): representa o fluxo de juros, incidentes sobre a dívida interna e externa do pais,. É determinado pelo nível da taxa de juros nominal e pela dimensão do estoque da dívida.
  • Resultado Primário - Total - Setor público consolidado (sem desvalorização cambial): corresponde ao resultado nominal menos o juros nominais. É equivalente também da diferença entre as receitas primárias e despesas primárias.

Para capturar os indicadores, utilizaremos a biblioteca python-bcb, que nos fornecerá o módulo sgs, que nos permitirá buscar dados do Sistema Gerenciador de Séries Temporais.  É através do códigos fornecidos pelo Sistema que poderemos importar os dados direto no python. Para aprender como é possível utilizar a biblioteca, veja o post Coletando dados do Banco Central com Python.

Uma vez coletados os dados das Estatísticas Fiscais, poderíamos utilizados para realizar a análise e tomar interpretações econômicas, entretanto, os dados estão a preços de mercado, portanto, é interessante antes de qualquer estudo deflacionar os dados e entender como as séries foram representadas ao longo do tempo.

Para tanto, podemos buscar a série do IPCA para que possamos deflacionar os dados. Utilizamos a biblioteca ipeadatapy para capturar os dados do IPCA. Para entender mais sobre a biblioteca, veja o post Coletando dados do IPEADATA com Python .

Com os dados em mãos, aplicamos o cálculo de deflacionamento na série das Estatísticas Fiscais. É possível entender mais sobre esta questão no post Deflacionando dados no Python. Após a construção do deflator, o multiplicamos com os valores dos dados utilizando o método mult().

Por fim, utilizamos o método rolling() e sum() para criar uma janela móvel de 12 meses para que seja feito a soma dos valores. Essa acumulação é útil para que possamos interpretar os caminhos dos resultados fiscais em um período de tempo maior, ao invés de nos ater a períodos de curto prazo.

Podemos enfim analisar os resultados das estatísticas fiscais por meio de gráficos, abaixo, plotamos as séries utilizando o seaborn e o matplolib.

 

________________________________________

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Frameworks para criar AI Agents

Neste post, vamos dar o primeiro passo rumo à construção de Agentes de IA mais sofisticados, capazes de tomar decisões, interagir com ferramentas externas e lidar com tarefas complexas. Para isso, precisamos entender o papel dos frameworks agenticos (ou agentic frameworks) e como eles podem facilitar esse processo. Aqui introduzimos dois frameworks populares de desenvolvimento de Agentes de IA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.