Coletando dados do IPEADATA com Python

A Coleta de dados econômicos é o primeiro passo para o trabalho de um analista de dados econômicos. Por sorte, o processo é facilitado através da biblioteca ipeadatapy, que permite extrair dados do IPEADATA de forma simples através de sua API. No post de hoje, iremos realizar uma demonstração de como é possível utilizar o pacote.

O Ipeadata é um repositório público que mantém dados de diversas fontes e temas de forma a auxiliar analistas e pesquisadores. É disponibilizado via seu site dados sobre macroeconomia, dados regionais e sociais. O seu site possui uma interface amigável que permite navegar entre os diferentes temas e fontes.

Apesar disto, o processo de extração pode ser melhorado através de sua API, que é disponibilizada pela própria plataforma. Por sorte, foi criado um API Wrapper para o Python, sendo facilitado a extração de dados direto para a linguagem.

Carrega a biblioteca

Lista de séries

O primeiro passo para utilizar o ipeadatapy após sua instalação e importação é conhecer os códigos dos diversos indicadores disponibilizados pelo Ipeadata. Apesar de ser possível conhecer as séries através do site http://www.ipeadata.gov.br/Default.aspx, de fato, conhecer o código da série para a extração não é trivial, sendo assim, utilizamos a função list_series() para obter as informações sobre todas as séries, bem como seus respectivos códigos.

Para obter informações sobre uma série em específico, usamos na função um string buscando um nome em comum dessa. Realizamos o procedimento com o Saldo de Admitidos do novo Caged.

Com o código em mãos, é possível obter maiores informações sobre os metadados da série com a função describe().

Metadados

Um outra função para a busca de informações da série, porém, mais completa, se encontra no metadata(), no qual permite a busca da série, porém, com maiores quantidades de filtros e informações.

Veja que desta vez é retornado 15 colunas, cada uma representando uma descrição sobre as séries. Através das informações das colunas, é possível utilizá-las como argumentos de forma a buscar as séries com as função.

Importação da série

Por fim, para extrair os dados do Ipeadata, utilizamos a função timeseries() em conjunto com o código da série para obter os dados de fato. É importado as colunas com o ano, dia, e mês de cada observação, além do valor da série. A importação também traz a data no índice.

A função também utiliza-se de argumentos que possibilitam ajustar o período de importação dos dados. Com eles, é possível extrair os dados em uma data exata, menor ou maior em relação ao ano, mês e dia escolhidos.

A biblioteca auxilia também no processo de visualização rápida com o método plot(). Abaixo, um exemplo de como utilizar o argumento para o eixo x e o eixo y da função, bem com o tipo do gráfico.

Quer saber mais?

Veja nossos cursos de Python aplicado: R e Python para Economistas, Econometria usando R e Python e Estatística usando R e Python

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.