Como estimar o índice de Gini no R

O índice de Gini é uma medida de distribuição de renda muito interessante e conhecida, que tenta expressar em um valor único a desigualdade apresentada na curva de Lorenz. Neste exercício mostramos como podemos estimar essa medida facilmente no R.

O índice de Gini consiste em um número entre 0 e 1, onde 0 corresponde à completa igualdade e 1 corresponde à completa desigualdade e pode ser calculado com a fórmula de Brown abaixo:

Onde:

G = coeficiente de Gini
X = proporção acumulada da variável "população"
Y = proporção acumulada da variável "renda"

Para esse exercício usaremos os microdados da PNAD Contínua trimestral do IBGE, que possui a variável Rendimento mensal efetivo de todos os trabalhos (VD4020). E para tornar o exercício interessante faremos a estimação do índice de Gini por estado (UF) brasileiro.

Pacotes

Para a finalidade do exercício utilizaremos os seguintes pacotes do R, todos disponibilizados no CRAN:


# Instalar/carregar pacotes
if(!require("pacman")) install.packages("pacman")
pacman::p_load(
"PNADcIBGE",
"survey",
"convey",
"tidyverse"
)

Dados

O último trimestre da pesquisa disponível na data deste exercício é referente ao 1º trimestre de 2021. Apontamos esse período na função get_pnadc(), especificamos as variáveis desejadas para coleta e convertemos o objeto resultante para a classe convey para poder fazer a estimação:


pnadc_0121 <- PNADcIBGE::get_pnadc(year = 2021, quarter = 1, vars = c("UF", "VD4020")) %>%
convey::convey_prep()

Estimar índice de Gini

Para estimar o índice de Gini o pacote convey oferece a função svygini, bastando especificar a variável de renda desejada. Como queremos a estimação por estado, usaremos também a função svyby do pacote survey, que serve justamente para calcularmos estatísticas por grupos dos nossos dados, nesse caso a UF.


gini_uf <- survey::svyby(
~VD4020,
by = ~UF,
design = pnadc_0121,
FUN = convey::svygini,
na.rm = TRUE
)

Visualizar os resultados

Por fim, vamos fazer um gráfico simples para visualizar o resultado da estimação, usando o ggplot2:


gini_uf %>%
dplyr::as_tibble() %>%
dplyr::mutate(UF = forcats::fct_reorder(UF, VD4020)) %>%
ggplot2::ggplot(ggplot2::aes(x = VD4020, y = UF)) +
ggplot2::geom_col(fill = "darkblue") +
ggplot2::theme_classic() +
ggplot2::labs(
title = "Índice de Gini por Estado",
subtitle = "Dados do 1º trimestre de 2021",
x = NULL,
y = NULL,
caption = "Fonte: Microdados PNADC-T/IBGE"
)

O que você achou do resultado? Surpreendente? Deixe suas impressões!

Quer aprender mais sobre utilização de microdados? Inscreva-se no curso de R e Python para Economistas.

 

________________________

(*) Para entender mais sobre micro dados e desigualdade, confira nosso Cursos de Micro Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar um Agente de IA coletor de dados

A tecnologia de agentes de IA está democratizando o acesso e a manipulação de dados econômicos complexos, tornando-a acessível mesmo para aqueles sem experiência em programação. Neste post discutimos a criação de agentes de IA para coletar dados econômicos brasileiros usando linguagem natural, como "Qual é a expectativa do IPCA para 2025?".

Como Criar um Agente Analista para Dados da Inflação com LangGraph

Este post mostra como automatizar a análise da inflação brasileira com o uso de agentes inteligentes. Utilizando o LangGraph, integramos dados do IPCA, núcleos de inflação e grupos do índice para criar um sistema capaz de gerar análises econômicas automatizadas com base em consultas em linguagem natural.

Como Criar um Agente para Análise da Atividade Econômica com LangGraph

Este post mostra como automatizar a análise da atividade econômica brasileira com agentes inteligentes. Utilizando o framework LangGraph e dados do IBGE e Banco Central, construímos um sistema capaz de gerar respostas analíticas a partir de perguntas em linguagem natural, unindo automação de consultas SQL e interpretação econômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.