Dashboard de Mercado de Trabalho

O Mercado de trabalho configura em uma associação de relações entre demanda e oferta de trabalho e na análise de conjuntura, investigar esta área é de grande importância, devido a riqueza de informações que os indicadores passam sobre a situação socioeconômica do país. Na Análise Macro, realizamos essa investigação da forma mais facilitada possível: com um dashboard! Com base nos painéis interativos produzidos no nosso Curso de Análise de Conjuntura, conseguimos analisar por completo essa área. No post de hoje mostraremos o dashboard de mercado de trabalho.

Nas últimas semanas, realizamos demonstrações sobre os dashboards de nível de atividade econômica e de inflação, produzidos aqui na Análise Macro, no qual também ensinamos nestes posts a como realizar o deploy desses painéis. Para o dashboard de trabalho não é diferente, caso queira realizar o compartilhamento online do painel é possível seguindo os mesmo passos.

Você pode ver o resultado através do seguinte link: https://analisemacro.shinyapps.io/dashboard_trabalho/

Existem três abas no dashboard, contando com a página inicial. Na primeira, que é a página inicial, demonstra a visão geral do mercado de trabalho, exibindo gráfico temporal da variação da taxa do desemprego medida pela PNADc mensal. As caixas exibem os valores dos ocupados e desocupados em milhões, medidos pelo IBGE, bem como o último valor da taxa de desocupados.

Na segunda aba, demonstra o termômetro do PNADc, desagregando o seus principais indicadores, separando-os também por abas.  Na primeira, é medido em milhões de pessoas a População total (PIA), a Força de Trabalho (PEA), o número de Ocupados e Desocupados, as pessoas Fora da Força de Trabalho (PNEA), a Taxa de Desocupação, o Nível de Ocupação e  a Taxa de Participação.

Em Ocupação por categorias, é desagregado as categorias do tipo de emprego pelas pessoas ocupadas. mostrando em milhões o Empregado com e sem Carteira, o Trabalhador Doméstico, o Empregado do Setor Público, o Trabalhador familiar auxiliar, o Empregador e aqueles que trabalham por Conta Própria.

Também é desagregado em relação aos grupos de atividade exercidos pelo trabalhadores, medidos em milhões de pessoas, demonstrando as áreas de Agricultura, Indústria Geral, Construção, Comércio, Transporte, Alojamento e alimentação, entre outros tipos de atividade, que são medidos pela PNADc.

É também possível acompanhar o rendimento dos trabalhadores, em reais, ao longo do tempo. Vemos no dashboard o rendimento médio real e nominal em uma aba de rendimentos, bem como também é possível ver a massar de rendimentos em milhões em outra aba (também real e nominal).

Por fim, vemos ao longo do tempo o Saldo no Novo CAGED a nível nacional, em milhares.

 

Como foi possível ver, o dashboard de mercado de trabalho nos force informações importantes para analisar a conjuntura e os caminhos econômicos percorridos no país, o útil a sua fácil utilização. Aqui na Análise Macro, ensinamos a construir dashboards iguais a este com nossos Curso de Análise de Conjuntura com o R e de Produção de Dashboards.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Otimizando um Portfólio de Investimentos com Machine Learning

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Como usar IA + Python para o Mercado Financeiro?

Neste post, mostramos como a Inteligência Artificial, aliada à linguagem Python, está revolucionando o mercado financeiro. Exploramos as principais áreas onde essa tecnologia pode ser aplicada — como gestão de carteiras, análise de demonstrações contábeis, estratégias quantitativas, trading e análise macroeconômica — com foco em aplicações práticas e exemplos voltados para o contexto brasileiro.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.