Depreciação cambial ainda não preocupa

O boletim Focus divulgado agora há pouco trouxe poucas novidades. O destaque é que, pela quarta semana seguida, a mediana das instituições consultadas corrigiu a expectativa para a taxa de câmbio R$/US$ no final do ano. Agora, espera-se que o câmbio feche próximo a 3,87 R$/US$. A despeito disso, a inflação esperada segue em queda, agora esperada em 3,54% para o ano de 2019. O motivo disso é que o repasse cambial parece estar sendo compensado pela queda dos preços de commodities e, obviamente, pela ociosidade ainda grande da economia.

Para a semana, o destaque é a divulgação da Pesquisa Mensal do Comércio na quarta e da Pesquisa Mensal de Serviços na quinta-feira. Ambas as pesquisas contam com scripts automáticos que são detalhados em nosso Curso de Análise de Conjuntura usando o R. Maiores detalhes sobre o boletim Focus, veja nossa apresentação automática aqui.

Para nossos alunos do plano premium e para todos os assinantes do Clube do Código, a Edição 48 constrói um modelo que busca medir o repasse cambial para a inflação. Em média, a cada 10% de desvalorização, estimamos um repasse de 0,56 p.p. em um trimestre. Como dito acima, entretanto, esse repasse não é automático, uma vez que pode ser compensado pela ociosidade da economia e por outros fatores como preços de commodities.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Resultado PIMPF - Novembro/2024

Resumo A Análise Macro apresenta os resultados da PIMPF de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados.

Resultado PIB - 3° Trimestre/2024

A Análise Macro apresenta os resultados da PIB 3º trimestre de 2024, com gráficos e tabelas elaborados em Python para coleta, tratamento e visualização de dados.

Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Como treinar e selecionar os melhores modelos de previsão no Python?

Em previsão, há uma infinidade de modelos que podem ser usados. O processo de escolha do(s) modelo(s) deve ser empírico-científico, usando métodos que visem avaliar a generalização dos algoritmos para dados novos. Neste artigo, mostramos como implementar a metodologia de validação cruzada com algoritmos de machine learning no Python, exemplificando para a previsão do IPCA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.