Melhora nas previsões para o crescimento em 2020

O boletim Focus divulgado hoje de manhã pelo Banco Central trouxe um leve deslocamento nos intervalos da projeção para o crescimento da economia brasileira em 2020, refletindo os dados do PIB e da Produção Industrial divulgados na semana passada. A análise desses dados com o R faz parte do nosso Curso de Análise de Conjuntura usando o R. Abaixo, um gráfico com a previsão média e os respectivos limites.

O crescimento máximo foi corrigido de -3,83% para -1,63% e o mínimo de -10,02% para -9,08%. O crescimento médio esperado está em -5,32%.

A incerteza em relação aos números do PIB em 2020 ainda é bastante considerável, mas lentamente há mais revisões positivas do que negativas para o tombo. Contribuiu para isso, os resultados da produção industrial, que avançou fortemente em maio, junho e julho.

______________________

(*) Isso e muito mais você aprende nos nossos Cursos Aplicados de R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.