PIB pode cair até 11% em 2020

O IBGE divulgou na última sexta-feira o resultado do PIB no 1º trimestre de 2020. Como antecipado pelos indicadores de alta frequência, houve uma queda de 1,5% na margem, isto é, contra o 4º tri de 2019. Amanhã, no comentário de conjuntura semanal, eu vou divulgar a atualização do script de R para coleta, tratamento e visualização automatizada dos dados do PIB que utilizamos em nosso Curso de Análise de Conjuntura usando o R. O script torna bem mais simples a tarefa de lidar com esses dados, que são importados para o R diretamente do SIDRA/IBGE com o pacote sidrar.

O resultado do PIB, diga-se, alterou levemente a média e a mediana das expectativas do boletim Focus. Em 22/05, a expectativa média era de crescimento de -5,92%, já em 29/05, houve uma deterioração adicional para -6,16%. Ao longo da semana, as instituições que compõem o Focus devem atualizar as expectativas.

Um ponto que me chamou atenção no boletim Focus divulgado hoje pela manhã é que o crescimento mínimo se manteve em -11%. O gráfico acima ilustra.

Ainda que seja cedo para dizer, pode ser o início de um consenso em torno do fundo do poço para a economia brasileira esse ano.

(*) Isso e muito mais você aprende em nossos Cursos de Macroeconomia Aplicada.

_________________


_________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.