Relatório AM #12 - PIM-PF

No Relatório AM dessa semana, vamos visualizar os movimentos recentes da PIM-PF e apresentar os resultados de nossas previsões para as próximas duas observações desse índice, baseados em modelos estatísticos de ponta. Abaixo, reportamos a pesquisa em suas três principais divisões, e também o índice da indústria automotiva, que possui grande influência sobre o total. Como podemos ver, tal setor ainda não se recuperou, especialmente em comparação com o geral da indústria de transformação, como resultado de choques de oferta na cadeia de produção de veículos.

Também podemos observar as diferenças nos comportamentos de cada índice em sua variação interanual. É interessante notar a natureza mais volátil da indústria extrativa, enquanto que a de automóveis, que era particularmente estável até a pandemia, teve um congelamento quase total, o que causa números tão grandes em seu gráfico.

Para finalizar, apresentamos abaixo os resultados de nosso modelo de previsão para a variação interanual da indústria geral.

________________________

(*) Para entender mais sobre nível de atividade e análise de conjuntura econômica, confira nosso Curso de Análise de Conjuntura usando o R - Versão 5.0.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.