Relatório AM #33 - Pesquisa Mensal do Comércio (PMC)

A Pesquisa Mensal do Comércio (PMC) é o principal indicador em frequência mensal para avaliar como se comportam o volume de vendas e de receita no varejo brasileiro. A pesquisa conduzida pelo IBGE conta com dados disponíveis no SIDRA e pode ser acessada via o pacote de R sidrar. No nosso Curso de Análise de Conjuntura usando o R, nós ensinamos os alunos a construir scripts que automatizam a coleta, tratamento e apresentação da pesquisa.

O início do script é carregando os pacotes necessários.


## Pacotes utilizados nessa apresentação
library(tidyverse)
library(lubridate)
library(tstools)
library(sidrar)
library(zoo)
library(scales)
library(gridExtra)
library(tsibble)
library(timetk)
library(knitr)

Uma vez que os pacotes são carregados, nós podemos coletar os dados diretamente via a API do SIDRA/IBGE. O código abaixo dá um exemplo para o varejo restrito.


## Coleta e tratamento dos dados do Comércio Restrito
names = c('date', 'receita', 'receita_sa', 'volume', 'volume_sa')
restrito = get_sidra(api='/t/3416/n1/all/v/all/p/all/c11046/40311,40312/d/v564%201,v565%201') %>%
mutate(date = parse_date(`Mês (Código)`, format = '%Y%m')) %>%
select(`Variável`, date, `Tipos de índice`, Valor) %>%
spread(`Variável`, Valor) %>%
pivot_wider(id_cols = date,
names_from = 'Tipos de índice',
values_from = c('Índice de receita nominal de vendas no comércio varejista',
'Índice de volume de vendas no comércio varejista')) %>%
`colnames<-`(names) %>%
as_tibble()

A seguir, colocamos um gráfico com a variação interanual.

Você confere o script completo no nosso Curso de Análise de Conjuntura usando o R. A apresentação da PMC também está disponível no Clube AM.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.