Relatório AM #34 - Pesquisa Mensal de Serviços (PMS)

A Pesquisa Mensal de Serviços (PMS) é um dos principais indicadores de acompanhamento do setor de serviços no Brasil. A pesquisa produzida pelo IBGE podem ter seus dados acessados pelo SIDRA. No R, é possível acessar os dados da PMS através do pacote {sidrar}. Nós ensinamos além dessa coleta, o tratamento e a visualização  no nosso Curso de Análise de Conjuntura.

Primeiro carregamos os pacotes.


library(tidyverse)
library(sidrar)
library(patchwork)

Prosseguimos para a coleta dos dados via SIDRA e também para o tratamento dos dados.


# PMS
parametros <- list(api_pms = "/t/6442/n1/all/v/all/p/all/c11046/40311,40312/d/v8676%201,v8677%201")

# Função get_sidra realiza a coleta dos dados

raw_pms <- sidrar::get_sidra(api = parametros$api_pms)

# Tratamentos dos dados e o cálculos das variações

pms <- raw_pms %>%
dplyr::filter(`Variável` == "Índice de volume de serviços") %>%
dplyr::select(
"date" = `Mês (Código)`,
"index" = `Tipos de índice`,
"value" = Valor
) %>%
tidyr::pivot_wider(
id_cols = date,
names_from = index,
values_from = value
) %>%
rename_with(~c("date", "volume", "volume_sa")) %>%
dplyr::mutate(
date = lubridate::ym(date),
margem_volume = (volume_sa / dplyr::lag(volume_sa, 1) - 1) * 100,
interanual_volume = (volume / dplyr::lag(volume, 12) - 1) * 100,
anual_volume = acum_i(volume, 12),
id = "PMS (Volume)"
) %>%
filter(date > "2015-01-01")

A partir disso, podemos visualizar nossos dados.

 

 

 

Além do gráfico de linhas, construímos também uma tabela.

________________

Você confere o script completo no nosso Curso de Análise de Conjuntura usando o R. A apresentação da PMC também está disponível no Clube AM.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Otimizando um Portfólio de Investimentos com Machine Learning

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.