Relatório AM #34 - Pesquisa Mensal de Serviços (PMS)

A Pesquisa Mensal de Serviços (PMS) é um dos principais indicadores de acompanhamento do setor de serviços no Brasil. A pesquisa produzida pelo IBGE podem ter seus dados acessados pelo SIDRA. No R, é possível acessar os dados da PMS através do pacote {sidrar}. Nós ensinamos além dessa coleta, o tratamento e a visualização  no nosso Curso de Análise de Conjuntura.

Primeiro carregamos os pacotes.


library(tidyverse)
library(sidrar)
library(patchwork)

Prosseguimos para a coleta dos dados via SIDRA e também para o tratamento dos dados.


# PMS
parametros <- list(api_pms = "/t/6442/n1/all/v/all/p/all/c11046/40311,40312/d/v8676%201,v8677%201")

# Função get_sidra realiza a coleta dos dados

raw_pms <- sidrar::get_sidra(api = parametros$api_pms)

# Tratamentos dos dados e o cálculos das variações

pms <- raw_pms %>%
dplyr::filter(`Variável` == "Índice de volume de serviços") %>%
dplyr::select(
"date" = `Mês (Código)`,
"index" = `Tipos de índice`,
"value" = Valor
) %>%
tidyr::pivot_wider(
id_cols = date,
names_from = index,
values_from = value
) %>%
rename_with(~c("date", "volume", "volume_sa")) %>%
dplyr::mutate(
date = lubridate::ym(date),
margem_volume = (volume_sa / dplyr::lag(volume_sa, 1) - 1) * 100,
interanual_volume = (volume / dplyr::lag(volume, 12) - 1) * 100,
anual_volume = acum_i(volume, 12),
id = "PMS (Volume)"
) %>%
filter(date > "2015-01-01")

A partir disso, podemos visualizar nossos dados.

 

 

 

Além do gráfico de linhas, construímos também uma tabela.

________________

Você confere o script completo no nosso Curso de Análise de Conjuntura usando o R. A apresentação da PMC também está disponível no Clube AM.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados para monitoramento climático com Python

As condições climatológicas influenciam desde a safra de grãos até a decisão de um vendedor ambulante levar seu carrinho para a praia ou não. Por sua importância e impactos na economia do país, neste exercício mostramos como coletar e elaborar análises de dados sobre o clima usando o Python.

Coletando dados de secas e queimadas no Brasil com Python

Neste artigo exploramos fontes públicas de dados sobre secas e queimadas no Brasil. Mostramos como acessar, coletar e preparar os dados para elaboração de análises. Usamos a linguagem Python para desenvolver uma rotina automatizada.

Como analisar demonstrações contábeis usando IA

Neste post, vamos explorar como utilizar o modelo de linguagem Gemini do Google para analisar demonstrações contábeis anuais da Eletrobras e extrair informações relevantes para tomada de decisão. Através de um código Python, vamos importar os dados direto da CVM, conectar com o Gemini e gerar resumos sobre as contas das demonstrações e perspectivas futuras sobre as finanças da empresa.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.