Relatório AM #36 - PIB

O Produto Interno Bruto é o principal indicador para acompanhamento do nível de atividade no Brasil, medindo a soma final de todos os bens e serviços produzidos no país. Os dados do PIB podem ser acessados através do SIDRA, sendo importados facilmente no R através do pacote {sidrar}. No Relatório AM de hoje, trazemos uma parte do código que ensinamos no Curso de Análise de Conjuntura de como automatizar o processo de coleta, tratamento e visualização dos dados do PIB.

library(tidyverse)
library(sidrar)
library(flextable)
## Funções e objetos úteis

# Acumular valores percentuais em 'n' janelas móveis
acum_i <- function(data, n){

data_ma_n <- RcppRoll::roll_meanr(data, n)

data_lag_n <- dplyr::lag(data_ma_n, n)

data_acum_n = (((data_ma_n/data_lag_n)-1)*100)

return(data_acum_n)

}

# Cores para gráficos e tabelas
colors <- c(
blue = "#282f6b",
red = "#b22200",
yellow = "#eace3f",
green = "#224f20",
purple = "#5f487c",
orange = "#b35c1e",
turquoise = "#419391",
green_two = "#839c56",
light_blue = "#3b89bc",
gray = "#666666"
)

# Fonte para gráficos e tabelas
foot_ibge <- "Fonte: analisemacro.com.br com dados do Sidra/IBGE."

# Definir padrão de tabelas
flextable::set_flextable_defaults(
big.mark = " ",
font.size = 10,
theme_fun = theme_vanilla,
padding.bottom = 6,
padding.top = 6,
padding.left = 6,
padding.right = 6,
decimal.mark = ",",
digits = 2L
)

Definimos a chave do API que coletaremos através do {sidrar}.

## Parâmetros e códigos para coleta de dados
parametros <- list(
# PIB com ajuste sazonal
api_pib_sa = "/t/1621/n1/all/v/all/p/all/c11255/90707/d/v584%202",

# PIB sem ajuste
api_pib = "/t/1620/n1/all/v/all/p/all/c11255/90707/d/v583%202"
)

Retiramos os dados com a função get_sidra do pacote {sidrar}.

## Coleta dos dados

# PIB com ajuste sazonal
raw_pib_sa <- sidrar::get_sidra(api = parametros$api_pib_sa)

# PIB sem ajuste
raw_pib <- sidrar::get_sidra(api = parametros$api_pib)

Tratamos os dados, realizando a limpeza e o cálculo das variações do índice do PIB.

## Tratamento dos dados

# PIB com ajuste sazonal
pib_sa <- raw_pib_sa %>%
dplyr::mutate(
date = zoo::as.yearqtr(`Trimestre (Código)`, format = "%Y%q"),
var_marginal = (Valor / dplyr::lag(Valor, 1) - 1) * 100
) %>%
dplyr::select(date, "pib_sa" = Valor, var_marginal) %>%
dplyr::as_tibble()

# PIB sem ajuste
pib <- raw_pib %>%
dplyr::mutate(
date = zoo::as.yearqtr(`Trimestre (Código)`, format = "%Y%q"),
var_interanual = (Valor / dplyr::lag(Valor, 4) - 1) * 100,
var_anual = acum_i(Valor, 4)
) %>%
dplyr::select(date, "pib" = Valor, var_interanual, var_anual) %>%
dplyr::as_tibble()

# Juntar os dados do PIB
df_pib <- dplyr::inner_join(pib_sa, pib, by = "date") %>%
tidyr::drop_na() %>%
dplyr::filter(date >= "2007 Q1")

Índice do PIB

Vemos que é possível visualizar através do pacote ggplo2 o índice do PIB ao longo do tempo, comparando o PIB sem e com ajuste sazonal.

# Gerar gráfico
df_pib %>%
dplyr::filter(date > "2000 Q1") %>%
ggplot2::ggplot(ggplot2::aes(x = date)) +
ggplot2::geom_line(ggplot2::aes(y = pib, color = "PIB"), size = 0.8) +
ggplot2::geom_line(ggplot2::aes(y = pib_sa, color = "PIB s.a."), size = 0.8) +
ggplot2::scale_color_manual(
NULL,
values = c("PIB" = unname(colors[1]), "PIB s.a." = unname(colors[2]))
) +
zoo::scale_x_yearqtr(
breaks = scales::pretty_breaks(n = 8),
format = "%Y T%q"
) +
ggplot2::theme(
plot.title = ggplot2::element_text(size = 12, face = "bold"),
legend.position = "bottom"
) +
ggplot2::labs(
x = NULL,
y = "Número Índice",
title = "Produto Interno Bruto",
caption = foot_ibge
)

Variações do PIB

Realizamos o calculo das variações marginais, interanuais e anuais do PIB, através do índice, dentro do R e podemos visualizar através da construção de um tabela.

# Filtrar últimos 8 trimestres
df_pib_tbl <- df_pib %>%
dplyr::slice_tail(n = 8) %>%
dplyr::select(var_marginal, var_interanual, var_anual)

# Tabela com variações e número índice do PIB
df_pib %>%
dplyr::slice_tail(n = 8) %>%
flextable::flextable() %>%
flextable::set_header_labels(
date = "Trimestre", pib_sa = "PIB s.a.", var_marginal = "Var. Marginal", pib = "PIB",
var_interanual = "Var. Interanual", var_anual = "Var. Anual"
) %>%
flextable::add_header_row(
colwidths = c(3, 3),
values = c("Sazonalmente ajustado", "Sem ajuste sazonal")
) %>%
flextable::colformat_double(j = 2:6, digits = 2) %>%
flextable::align(i = 1, part = "header", align = "center") %>%
flextable::add_footer_lines(foot_ibge) %>%
flextable::color(part = "footer", color = colors["gray"]) %>%
flextable::bg(
j = c("var_marginal", "var_interanual", "var_anual"),
bg = scales::col_numeric(
palette = colorspace::diverge_hcl(n = 20, palette = "Blue-Red 2"),
reverse = TRUE,
domain = c(-max(abs(df_pib_tbl)), max(abs(df_pib_tbl)))
),
part = "body"
) %>%
flextable::theme_vanilla() %>%
flextable::width(width = .95)

____________________

Quer conferir o código completo e aprender a como criar uma análise do PIB utilizando o R? Veja nosso Curso de Análise de Conjuntura.

____________________

 

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.