Relatório AM #37 - Produção Industrial

A produção industrial é uma pesquisa realizada mensalmente pelo IBGE, como forma de acompanhar o comportamento das indústrias do Brasil. A pesquisa revela informações importantes sobre o nível de atividade e os rumos do crescimento econômico do país. No relatório AM de hoje mostramos como pode ser fácil capturar os dados, tratá-los e comunicar os resultados de forma automática e reprodutível dentro do R.

## Cria função para calcular variação dos índices

var_indice <- function(x, lag) {
w <- (x/dplyr::lag(x, lag) - 1)*100
return(w)
}


## Cria função para calcular a variação acumulada dos índices

acum_i <- function(data, n){

data_ma_n <- RcppRoll::roll_meanr(data, n)

data_lag_n <- dplyr::lag(data_ma_n, n)

data_acum_n = (((data_ma_n/data_lag_n)-1)*100)

return(data_acum_n)

}

# Cria um vetor de cores para utilizar nos gráficos

colours <- c("#282f6b", "#b22200", "#eace3f", "#224f20")

# Pacotes utilizados
library(tidyverse)
library(sidrar)
library(RcppRoll)


# Coleta a PIM com ajuste sazonal

pim_aj <- get_sidra(api='/t/3653/n1/all/v/3134/p/all/c544/all/d/v3134%201') %>%
mutate(date = parse_date(`Mês (Código)`, format = "%Y%m")) %>%
select(date,
atividades = "Seções e atividades industriais (CNAE 2.0)",
value = "Valor") %>%
pivot_wider(names_from = atividades,
values_from = value) %>%
as_tibble()


## variação na margem

var_marg <- pim_aj %>%
mutate(across(where(is.numeric), ~ var_indice(.x, lag = 1))) %>%
slice(-1)

var_marg_long <- var_marg %>%
pivot_longer(cols = -date,
names_to = "variable")

# Variação Marginal {-}

## Visualização dos dados - Variação Marginal
filter(var_marg_long, date > "2018-12-31" &
variable %in% c('1 Indústria geral',
'2 Indústrias extrativas',
'3 Indústrias de transformação',
"3.29 Fabricação de veículos automotores, reboques e carrocerias")) %>%
ggplot(aes(x= date, y = value, colour = variable))+
geom_line(aes(colour= variable))+
scale_fill_manual(values=colours)+
scale_colour_manual(values=colours)+
geom_hline(yintercept = 0, colour='black', linetype='dashed')+
facet_wrap(~variable, scales = 'free')+
theme(legend.position = 'none',
strip.text = element_text(size=7, face='bold'),
axis.text.x = element_text(size=6),
plot.title = element_text(size=10, face='bold'),
plot.subtitle = element_text(size=8, face='italic'))+
scale_x_date(breaks = date_breaks("3 month"),
labels = date_format("%m/%y"))+
theme(axis.text.x=element_text(angle=45, hjust=1))+
labs(x='', y='',
title='Produção Industrial',
subtitle = 'Variação contra o mês imediatamente anterior (%)',
caption='Fonte: analisemacro.com.br com dados do IBGE')

É extremamente fácil coletar, tratar e visualizar dados no R. Além de gráficos da variação mensal da PIM, é possível também criar gráficos da variação interanual e variação acumulada no R. Também é fácil a criação de tabelas bem formatas e estilizadas. Tudo isso você pode aprender com o nosso Curso de Análise de Conjuntura, onde ensinamos a teoria e prática com o R.

___________________________

 

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como tratar dados no Python? Parte 5: renomeando colunas

Como dar novos nomes significativos para as colunas em uma tabela de dados usando Python? Neste tutorial mostramos os métodos de renomeação de colunas disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Como tratar dados no Python? Parte 4: operações por grupos

Como mensalizar dados diários? Ou como filtrar os valores máximos para diversas categorias em uma tabela de dados usando Python? Estas perguntas são respondidas com os métodos de operações por grupos. Neste tutorial mostramos estes métodos disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.