A inflação pode ficar abaixo da meta em 2017?

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" use_border_color="off" border_color="#ffffff" border_style="solid"]

Essa semana, o boletim Focus registrou que a mediana das expectativas dos agentes para a inflação em 2017 ficou abaixo de 4,5%, pela primeira vez na série. Não deixa de ser uma grande notícia, dada a incerteza que percorria o comportamento da inflação cheia no ano passado. De fato, os modelos que temos estimado no âmbito da Análise Macro (alguns deles compartilhados com os membros do Clube do Código) indicam que existe uma probabilidade não desprezível da inflação ficar abaixo da meta esse ano.

Abaixo a projeção de um dos nossos modelos...

Na última edição do Clube do Código, nós destrinchamos outros modelos...

[/et_pb_text][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/clube-do-codigo/" url_new_window="off" button_text="Conhecer o Clube do Código" button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados do Google Trends no R e no Python

Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.

Contribuição para a Volatilidade [Python]

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

Inflação de Serviços vs. Desemprego

A teoria econômica convencional sugere a presença de um trade-off entre inflação e desemprego no curto prazo, comumente conhecido como a Curva de Phillips. Em termos simples, reduções na taxa de desemprego podem resultar em um aumento temporário na inflação. Nesse contexto, a inflação de serviços emerge como uma categoria particularmente relevante devido às suas características distintivas. Para explorar e visualizar a relação entre inflação de serviços e desemprego, conduzimos uma análise utilizando a linguagem de programação Python. Além disso, empregamos o procedimento de Toda-Yamamoto para avaliar a existência de uma relação de causalidade no sentido Granger entre essas variáveis.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.