Analisando a deflação de setembro com o R

Ontem, o IBGE divulgou a inflação medida pelo IPCA em setembro. O resultado surpreendeu, com uma deflação de 0,04% em um mês onde tipicamente a inflação é positiva, dada a sazonalidade da mesma. De modo a investigar esse comportamento atípico, podemos plotar em um gráfico a inflação para os meses de setembro de vários anos. Usando o R, o script começa carregando alguns pacotes.


# Pacotes
library(tsutils)
library(ggplot2)
library(scales)
library(sidrar)

A partir do pacote sidrar, nós obtemos o número-índice do IPCA e depois a variação mensal do índice, que é a inflação.


## Criar Inflação mensal
ipca_indice = get_sidra(api='/t/1737/n1/all/v/2266/p/all/d/v2266%2013')
ipca_indice = ts(ipca_indice$Valor, start=c(1979,12), freq=12)
ipca_mensal = round((ipca_indice/stats::lag(ipca_indice,-1)-1)*100,2)

De posse da inflação, nós pegamos agora uma subamostra desde 1995.


## Criar amostras
ipca_mensal_subamostra = window(ipca_mensal, start=c(1995,01))

Agora, usando a função seas do pacote tsutils, nós agrupamos a inflação por meses e pegamos apenas os meses de setembro de cada ano.


# Criando e guardando gráfico de sazonalidade
seas <- seasplot(ipca_mensal_subamostra, trend=F, outplot = 3)
setembro <- as.numeric(seas$season[,9])
time <- seq(as.Date('1995-09-01'), as.Date('2019-09-01'), by='1 year')
df <- data.frame(time=time, setembro=setembro)

E por fim, geramos um gráfico com apenas os meses de setembro com o código abaixo.


# Gráfico
ggplot(df, aes(x=time, y=setembro))+
geom_bar(stat='identity', fill='darkblue', colour='darkblue')+
geom_text(aes(label=setembro), size=3,
fontface='bold',
position = position_dodge(width = 2),
hjust=0.5, vjust=ifelse(setembro>0,-0.7,1),
shape=21, colour=ifelse(setembro>0,"black", 'red'))+
theme(axis.text.x=element_text(angle=45, hjust=1))+
scale_x_date(labels = date_format("%b/%Y"),
breaks = time)+
labs(x='',y='% a.m.',
title='Inflação medida pelo IPCA em setembro',
caption='Fonte: analisemacro.com.br')

E o gráfico...

Como podemos ver, desde 1995, essa foi a segunda deflação que tivemos no mês de setembro. Tipicamente, a inflação se acelera no segundo semestre, de modo que os meses de setembro são marcados por variações positivas. A seguir, coloco um gráfico que deixa claro a sazonalidade da inflação.


# ggseasonplot
ipca_mensal_subamostra_2 = window(ipca_mensal, start=c(2007,01))
ggsubseriesplot(ipca_mensal_subamostra_2)+
labs(x='', y='% a.m.',
title='Sazonalidade da inflação medida pelo IPCA',
caption='Fonte: analisemacro.com.br')

Em outras palavras, parece que o hiato do produto negativo está tendo impacto sobre o cenário inflacionário, diante de uma política monetária muito bem conduzida pelo Banco Central nos últimos anos.

_____________________________

(*) Aprenda a lidar com dados macroeconômicos no nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.