Análise do IPCA com o R

O Índice de Preços ao Consumidor Amplo (IPCA) se consolidou como o principal índice de preços do país. Ele é utilizado, inclusive, como referência para o regime de metas para inflação administrado pelo Banco Central. O IPCA faz parte do Sistema Nacional de Índices de Preços ao Consumidor (SNIPC), sendo divulgado mensalmente pelo IBGE. A análise completa do índice faz parte do nosso Curso de Análise de Conjuntura usando o R.

O IPCA tem por objetivo medir a inflação de um conjunto de produtos e serviços comercializados no varejo, referentes ao consumo pessoal das famílias. Ele é construído de forma hierarquizada, sendo dividido em grupos, subgrupos, itens e subitens. Desde agosto de 1999, são nove os grupos: alimentos e bebidas, habitação, artigos de residência, vestuário, transportes, comunicação, saúde e cuidados pessoais, despesas pessoais e educação.

Para ilustrar a contribuição desses grupos para a inflação mensal, vamos coletar os dados da variação deles e o peso de cada grupo no índice diretamente do SIDRA/IBGE com o pacote sidrar.

O script começa, como de praxe, com os pacotes que utilizo.


library(tidyverse)
library(sidrar)

Na sequência, pegamos a variação e o peso dos nove grupos.


variacao =
'/t/7060/n1/all/v/63/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v63%202' %>%
get_sidra(api=.) %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Geral, grupo, subgrupo, item e subitem", Valor) %>%
pivot_wider(names_from = "Geral, grupo, subgrupo, item e subitem",
values_from = Valor)

peso =
'/t/7060/n1/all/v/66/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v66%204' %>%
get_sidra(api=.) %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Geral, grupo, subgrupo, item e subitem", Valor) %>%
pivot_wider(names_from = "Geral, grupo, subgrupo, item e subitem",
values_from = Valor)

A contribuição de cada grupo para a inflação mensal será dada pela multiplicação do peso pela variação, como abaixo.


contribuicao = (variacao[,-1]*peso[,-1]/100) %>%
mutate(date = variacao$date) %>%
select(date, everything())

De posse dos dados da contribuição, podemos construir o gráfico abaixo.

A partir desse gráfico, é possível ver que a inflação mensal tem se acelerado (a linha branca) e que a principal contribuição para isso vem do grupo Alimentação e bebidas (a parte verde).

_______________

(*) A análise completa está disponível no nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Qual o hiato do produto no Brasil?

Entender o hiato do produto é fundamental para avaliar o ritmo da economia e as pressões inflacionárias no Brasil. Neste artigo, mostramos como estimar essa variável não observável a partir dos dados do PIB, explorando diferentes metodologias — de regressões simples a modelos estruturais — e discutindo as limitações e incertezas que cercam cada abordagem.

Determinantes do Preço do Ouro: VAR + Linguagem R

Este artigo realiza uma análise econométrica para investigar os determinantes dinâmicos do preço do ouro. Utilizando um modelo Vetorial Autorregressivo (VAR) em R, examinamos o impacto de variáveis como o dólar (DXY), a curva de juros e a incerteza global. Os resultados mostram que um fortalecimento inesperado do dólar tem um efeito negativo e significativo no curto prazo sobre os retornos do ouro, embora a maior parte de sua variância seja explicada por fatores intrínsecos ao seu próprio mercado.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.