Com a palavra os heterodoxos...

Ontem, o caos político que tomou conta do país me impediu de compartilhar com vocês um artigo bastante interessante publicado no Valor, titulado Ajuste fiscal contraproducente, dos autores Guilherme Tinoco e Ricardo Barboza. Com base na evidência empírica disponível, os autores refutam a crítica de economistas heterodoxos ao ajuste fiscal. Para estes, uma redução do gasto público aprofundaria a recessão, fazendo com que a arrecadação de tributos caia, reduzindo ainda mais o superávit primário, aumentando ainda mais a relação dívida/pib. Barboza e Tinoco, por sua vez, mostram que isso só seria verdade para números irrealistas de multiplicador fiscal ou de elasticidade da arrecadação ao PIB.

Pela refutação da crítica heterodoxa ao ajuste fiscal, o artigo já valeria muito a pena. Adiciono um ponto para que você o leia e pense: os autores utilizam a evidência empírica disponível para refutar uma hipótese equivocada. Em qualquer lugar civilizado, é assim que economistas trabalham. Acreditar em uma teoria, sem efetuar contas ou mostrar dados que a suportem não é mais economia há muito tempo...

Para quem quiser ler o artigo inteiro, disponibilizo aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como treinar e selecionar os melhores modelos de previsão no Python?

Em previsão, há uma infinidade de modelos que podem ser usados. O processo de escolha do(s) modelo(s) deve ser empírico-científico, usando métodos que visem avaliar a generalização dos algoritmos para dados novos. Neste artigo, mostramos como implementar a metodologia de validação cruzada com algoritmos de machine learning no Python, exemplificando para a previsão do IPCA.

Como selecionar variáveis para modelos de previsão no Python?

Em oposição à crença popular, grande parte dos modelos de machine learning não produzem previsões magicamente. É papel do cientista de dados executar uma boa engenharia de variáveis para não cair no clássico problema de “garbage in, garbage out” (GIGO) em aprendizado de máquina. Neste sentido, aprender a fazer uma boa seleção de variáveis é fundamental e neste artigo exploramos algumas possibilidades práticas usando o Python.

Resultado IPCA-15 - Novembro/2024

A Análise Macro apresenta os resultados do IPCA-15 de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.