O google trends melhora a previsão do desemprego? Veja o que o pessoal do NEOC/UFF anda fazendo...

No final de julho, o Matheus Rabelo (NEOC/UFF) chamou atenção para um aumento da procura pela palavra-chave "emprego" lá no Google Trends. Dei uma pequena ajuda a ele, na forma de tratar os dados do gtrends e chamei atenção para a possibilidade de utilizar essa variação na previsão da taxa de desemprego. Esse, inclusive, tem sido um tema recorrente nesse espaço, por questões óbvias. Será que melhora a modelagem e, consequentemente, a previsão de variáveis macroeconômicas? É o que me perguntei à época, aqui. O Matheus, então, acabou aceitando a proposta e publicou ontem a questão lá no blog do NEOC. O trabalho é preliminar, mas fico muito feliz por o pessoal do NEOC estar usando cada vez mais o  \(\mathbf{R}\) e se empolgando com dados. Sinto uma pontinha de responsabilidade nisso, desde que lancei lá atrás a ideia do GECE na faculdade de economia... Só uma pontinha, claro, porque o mérito é todo do pessoal do NEOC.  Continuem assim, NEOC! E, claro, deem uma olhada no trabalho deles, leitores... 🙂

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.