O google trends melhora a previsão do desemprego? Veja o que o pessoal do NEOC/UFF anda fazendo...

No final de julho, o Matheus Rabelo (NEOC/UFF) chamou atenção para um aumento da procura pela palavra-chave "emprego" lá no Google Trends. Dei uma pequena ajuda a ele, na forma de tratar os dados do gtrends e chamei atenção para a possibilidade de utilizar essa variação na previsão da taxa de desemprego. Esse, inclusive, tem sido um tema recorrente nesse espaço, por questões óbvias. Será que melhora a modelagem e, consequentemente, a previsão de variáveis macroeconômicas? É o que me perguntei à época, aqui. O Matheus, então, acabou aceitando a proposta e publicou ontem a questão lá no blog do NEOC. O trabalho é preliminar, mas fico muito feliz por o pessoal do NEOC estar usando cada vez mais o  \(\mathbf{R}\) e se empolgando com dados. Sinto uma pontinha de responsabilidade nisso, desde que lancei lá atrás a ideia do GECE na faculdade de economia... Só uma pontinha, claro, porque o mérito é todo do pessoal do NEOC.  Continuem assim, NEOC! E, claro, deem uma olhada no trabalho deles, leitores... 🙂

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Calculando o impulso de crédito no Python

Qual é o papel do crédito no crescimento da economia? Para analisar esta questão, calculamos o indicador de impulso de crédito para a economia brasileira e comparamos com o nível da atividade econômica usando o Python.

Analisando a Volatilidade de Longo Prazo do Ibovespa usando Python

Com base no modelo GARCH(1,1), realizamos realizar a modelagem da variância condicional dos log retornos diários do Ibovespa, abrangendo o período de janeiro de 2018 até dezembro de 2023. O objetivo principal é compreender a implementação desse modelo utilizando a linguagem de programação Python, além de conduzir uma análise do mercado acionário brasileiro ao longo do período amostral.

Ao concluirmos este exercício, teremos a capacidade de obter uma medida representativa da variância de longo prazo da série temporal. Essa medida poderá ser comparada com a variância histórica, permitindo-nos inferir se a volatilidade presente está atualmente inferior ou superior àquela projetada para o futuro. Essa análise contribuirá para uma melhor compreensão da dinâmica da volatilidade no mercado acionário brasileiro.

Construindo uma NAIRU para o Brasil usando Python

Um dos maiores desafios para aqueles que trabalham com dados econômicos é aliar a prática com a teoria. Para tanto, o uso do Python pode facilitar esse desafio, permitindo construir todos os passos de uma análise de dados. Demonstramos o poder da linguagem tomando como exemplo a construção da NAIRU para o Brasil.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.