Construindo previsões combinadas para a taxa de desemprego brasileira

[et_pb_section bb_built="1" admin_label="section"][et_pb_row admin_label="row" background_position="top_left" background_repeat="repeat" background_size="initial"][et_pb_column type="1_2"][et_pb_text text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" background_position="top_left" background_repeat="repeat" background_size="initial" _builder_version="3.17.5"]

Na seção 14 do nosso curso de Construção de Cenários e Previsões usando o R, ensinamos os alunos a construir previsões combinadas de diversos modelos. É bastante consensual na literatura de que previsões combinadas tendem a ser melhores do que previsões individuais, uma vez que elas podem incorporar as características de diversos modelos. Com base nesse pressuposto, na edição 53 do Clube do Código construímos uma previsão combinada para a taxa de desemprego brasileira, medida pela PNAD Contínua, com base no EQM de três modelos: SARIMA, Filtro de Kalman e BVAR. Os resultados encontrados corroboram com a literatura, como resumo nesse post.

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image src="https://analisemacro.com.br/wp-content/uploads/2019/03/cursosder.png" url="https://analisemacro.com.br/cursos-de-r/" align="center" use_border_color="off" _builder_version="3.17.5"]

 

[/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="row" background_position="top_left" background_repeat="repeat" background_size="initial"][et_pb_column type="4_4"][et_pb_text text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" background_position="top_left" background_repeat="repeat" background_size="initial" _builder_version="3.17.5"]

Para o exercício, pegamos uma amostra que vai de março de 2013 a janeiro de 2019. De forma a construir o EQM, dividimos a amostra em duas, uma para gerar os modelos e outra para o gerar as previsões. Abaixo uma tabela que compara algumas métricas de avaliação dos três modelos estimados.

 

Acurácia dos Modelos
  ME RMSE MAE MPE MAPE ACF1 Theil's U
SARIMA 0.28 0.38 0.28 2.41 2.41 0.51 1.70
Kalman -0.11 0.17 0.15 -0.95 1.26 0.42 0.70
BVAR 0.22 0.42 0.24 1.86 1.98 0.25 1.89
Combinada -0.07 0.17 0.16 -0.56 1.33 0.40 0.71

 

De fato, as previsões combinadas são as que possuem os menores erros, por praticamente todas as métricas de avaliação. Abaixo, para ilustrar, colocamos as previsões para seis meses dos três modelos e a combinação entre eles feita pelo inverso do EQM.

 

Previsões para a Taxa de Desemprego
  SARIMA Kalman BVAR Combinada
2019 Feb 12.6 12.4 11.9 12.3
2019 Mar 13.1 13.0 11.8 12.8
2019 Apr 12.9 12.8 11.8 12.6
2019 May 12.6 12.6 11.7 12.5
2019 Jun 12.3 12.4 11.5 12.3
2019 Jul 12.1 12.4 11.4 12.3

 

O exercício está disponível no repositório privado do Clube do Código no github.

_____________________________________

Conheça nossos Cursos Aplicados de R e aprenda a coletar, tratar, analisar e apresentar dados com o R!

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.