Análise do CAGED com o R

O Ministério da Economia, enfim, divulgou os dados do CAGED em 2020. Os resultados, adianto, não são nada bons. Para analisar os dados do saldo do CAGED, podemos usar o pacote ecoseries e pegar os dados do IPEADATA. O código abaixo exemplifica.


library(ecoseries)
df_caged = series_ipeadata('272844966', periodicity = 'M')$serie_272844966

Uma vez que os dados sejam baixados, podemos visualizar os meses de abril de diversos anos com o código abaixo.


library(tidyverse)
library(lubridate)
library(scales)

df_caged_abril = filter(df_caged, month(data) == 4)
ggplot(df_caged_abril, aes(x=data))+
geom_bar(aes(y=valor/1000),
colour = ifelse(df_caged_abril$valor > 0, 'blue', "red"),
fill = ifelse(df_caged_abril$valor > 0, 'blue', "red"),
stat='identity', width = 100)+
geom_hline(yintercept=0, colour='black', linetype='dashed')+
scale_x_date(breaks = date_breaks("1 years"),
labels = date_format("%Y"))+
labs(x='', y='Mil pessoas',
title='Saldo do CAGED nos meses de Abril',
caption='Fonte: analisemacro.com.br com dados do CAGED.')+
theme(plot.title = element_text(size=12, face='bold'),
plot.caption = element_text(size=9),
axis.title.y = element_text(size=9),
axis.text.x=element_text(angle=45, hjust=1))

Os dados indicam que houve um queda líquida de 860,5 mil vagas no mês de abril, refletindo a pandemia do coronavírus. Isso é bastante preocupante, uma vez que existe uma correlação forte entre o CAGED e o crescimento do PIB, como pode ser visto abaixo.

No mês de março, diga-se, houve uma queda líquida de 207,4 mil vagas. O gráfico abaixo ilustra.

Feita a dessazonalização da série, nós obtemos o gráfico abaixo, que ilustra melhor o comportamento do saldo do CAGED e o efeito da pandemia sobre ela.

Como se vê, o impacto sobre a série foi brutal. Haverá algum impacto sobre o PIB do 1º trimestre, mas o maior efeito deverá ser mesmo sobre o PIB do 2º tri. O dado do PIB do 1º trimestre será divulgado nessa sexta-feira. Já o do 2º tri será divulgado apenas em setembro.

A relação entre CAGED e crescimento do PIB foi analisada na edição 58 do Clube do Código.

____________________

(*) Você aprende a coletar, tratar e visualizar dados macroeconômicos no nosso Curso de Análise de Conjuntura usando o R.


____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.