Análise dos dados do CAGED com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

Os dados do CAGED de fevereiro, divulgados pelo próprio presidente Michel Temer na última quinta-feira, se somam aos demais indicadores de que existe, de fato, uma recuperação em curso. Ainda que incipiente e tímida, já é possível dizer que a economia brasileira está deixando o pior da recessão para trás. Membros do Clube do Código receberão apresentação completa com análise dos dados do CAGED. Abaixo, fazemos um resumo desses dados.

O dado de fevereiro, um saldo positivo após 22 meses de valores negativos, em si, não deve ser tão comemorado assim. Isso porque, feito o ajuste sazonal, ele ainda é negativo. Mas, como mostra o gráfico acima, o valor na margem deve ser sempre complementado com alguma análise de tendência do que esteja ocorrendo no mercado de trabalho. Por essa abordagem, por suposto, o que podemos perceber é que de fato existe uma melhora em curso. Abaixo suavizamos o dado na margem com uma média móvel de três meses.

E abaixo ampliamos o horizonte de comparação com a média móvel anual.

Por essa métrica, por suposto, dá para visualizar o tamanho do estrago no mercado de trabalho. Na ponta, entretanto, os dados mostram que existe uma melhora em curso. Ainda, claro, que o dado continue sendo negativo, o importante é que a derivada mudou de sinal. Para complementar essa análise, plotamos abaixo a razão entre salários de admitidos e demitidos. Tipicamente, em períodos de piora no mercado de trabalho, essa razão cai, melhorando à medida que a ociosidade diminui.

A despeito de muitas perturbações, o que o dado diz é que parece estar ocorrendo uma estabilização. À medida que a recuperação avance, devemos ver um aumento dessa razão. Em outros termos, os salários médios dos admitidos passam a compor uma parcela maior dos salários dos demitidos. Isso indicará a consolidação da retomada.

Importante ressaltar, por fim, que ainda estamos em uma situação crítica no mercado de trabalho. A taxa de desemprego ainda deve ficar alta ao longo do ano. Uma reversão deve ficar mesmo para o segundo semestre. Mas há sinais de que existe uma recuperação em curso. E sim, diante do caos em que estávamos mergulhados há um ano atrás, isso é uma grande notícia. 🙂

 

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="1_3"][/et_pb_column][et_pb_column type="1_3"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2017/02/CLUBE.png" show_in_lightbox="off" url="https://analisemacro.com.br/clube-do-codigo/" url_new_window="off" use_overlay="off" animation="left" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid" /][/et_pb_column][et_pb_column type="1_3"][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar o Google AI Studio e o Gemini?

Na corrida da IA, novas ferramentas e modelos são lançados quase que diariamente. Neste artigo mostramos como o Google tem competido neste mercado através do AI Studio e do Gemini e damos um exemplo de integração em Python.

Analisando a ancoragem das expectativas de inflação no Python

Se expectativas de inflação ancoradas com a meta são importantes para a economia, analisar o grau de ancoragem é imperativo para economistas e analistas de mercado. Neste exercício mostramos uma forma de aplicar esta análise com uma metodologia desenvolvida pelo FMI. Desde a coleta dos dados, passando pelo modelo e pela visualização de dados, mostramos como analisar a política monetária usando o Python.

Como analisar a DRE de empresas de capital aberto usando o Python

Quando analisamos a demonstração de resultados de uma empresa listada na bolsa de valores, frequentemente recorremos a ferramentas convencionais, que embora sejam úteis, muitas vezes carecem de automação. É aqui que entra o Python. Neste post, exploramos o poder do Python para automatizar o processo de coleta, tratamento e análise dos dados da Demonstração do Resultado do Exercício (DRE) da Eletrobras, utilizando dados fornecidos pela CVM (Comissão de Valores Mobiliários).

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.