CAGED mostra recuperação no mercado de trabalho

Os dados do CAGED referentes a setembro divulgados pelo Ministério da Economia hoje mostram uma recuperação consistente no mercado formal de trabalho. Pelo sexto mês consecutivo houve criação líquida de vagas. Em termos dessazonalizados, foram geradas 53.570 vagas. Como ensino no Curso de Análise de Conjuntura usando o R, temos um script automático que trata os dados do CAGED. Abaixo, um gráfico do saldo dessazonalizado entre admitidos e demitidos no CAGED.

A geração acumulada de vagas em 2019 é de 696.853. Abaixo, um gráfico da média móvel anual das séries de admitidos e demitidos.

Observa-se que houve uma virada em meados de 2018, com a série de admitidos superando a de demitidos. Abaixo, o saldo mensal do CAGED por setores.

Como se vê no gráfico, o setor de serviços tem dominado a recuperação nos últimos meses. Por fim, coloco abaixo a razão entre salários de admitidos e demitidos. Houve uma acomodação na margem dessa métrica, importante para verificar o poder de barganha dos novos admitidos ao longo do tempo.

Os dados do CAGED indicam uma recuperação no mercado de trabalho que deve se espalhar pela PNAD nos próximos meses, como aponta a edição 67 do Clube do Código, que fez uma comparação entre as duas séries do ponto de vista econométrico. Em resumo, os dados do CAGED costumam antecipar os da PNAD Contínua.

___________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.