CAGED para um lado, PNAD para outro?

Essa semana, saíram dados do Cadastro Geral de Empregados e Desempregados (CAGED) do Ministério do Trabalho, referentes ao emprego formal, com carteira e dados mais amplos da Pesquisa Nacional por Amostram de Domicílios (PNAD Contínua). A seguir, comento alguns destaques de ambas as pesquisas, utilizando os scripts automáticos de R que ensino no nosso Curso de Análise de Conjuntura usando o R.

Os dados do CAGED podem ser baixados a partir do IPEADATA com o pacote ecoseries. O código a seguir exemplifica.


library(ecoseries)

## Baixar dados
caged = ts(series_ipeadata('272844966',
periodicity = 'M')$serie_272844966$valor,
start=c(1999,05), freq=12)

Como há uma sazonalidade desconcertante nos dados, é preciso fazer um ajuste nos mesmos - ensino nesse vídeo aqui a fazer o ajuste. Uma vez feito o ajuste, podemos construir um gráfico como o abaixo, usando o pacote ggplot2.

Há, por suposto, uma nítida recuperação do saldo entre admitidos e demitidos. Na ponta e sem ajuste, foram gerados esse ano 539.640 postos líquidos de trabalho com carteira assinada. Isso é uma boa notícia, obviamente, para um mercado de trabalho que ainda sofre os efeitos de uma das maiores recessões da nossa História.

Olhando para o mesmo item na PNAD Contínua, isto é, a população ocupada com carteira assinada, o ritmo de recuperação ainda se mostra bastante lento, com alguns recuos na margem, como é possível notar no gráfico abaixo.

O estoque de ocupados com carteira vem caindo desde junho nessa pesquisa. Na margem, por suposto, a recuperação da população ocupada vem sendo liderada pelos ocupados sem carteira e pelos "conta-própria", como é possível verificar na abertura desse grupo, como no gráfico abaixo.

Vem daí, por suposto, os vetores que tem impulsionado uma queda (lenta) da taxa de desocupação, como pode ser visto no gráfico a seguir.

CAGED e PNAD Contínua têm metodologias e abordagens distintas, obviamente, mas é curioso notar a discrepância entre uma e outra na margem. A acompanhar os próximos meses...

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.