CAGED para um lado, PNAD para outro?

Essa semana, saíram dados do Cadastro Geral de Empregados e Desempregados (CAGED) do Ministério do Trabalho, referentes ao emprego formal, com carteira e dados mais amplos da Pesquisa Nacional por Amostram de Domicílios (PNAD Contínua). A seguir, comento alguns destaques de ambas as pesquisas, utilizando os scripts automáticos de R que ensino no nosso Curso de Análise de Conjuntura usando o R.

Os dados do CAGED podem ser baixados a partir do IPEADATA com o pacote ecoseries. O código a seguir exemplifica.


library(ecoseries)

## Baixar dados
caged = ts(series_ipeadata('272844966',
periodicity = 'M')$serie_272844966$valor,
start=c(1999,05), freq=12)

Como há uma sazonalidade desconcertante nos dados, é preciso fazer um ajuste nos mesmos - ensino nesse vídeo aqui a fazer o ajuste. Uma vez feito o ajuste, podemos construir um gráfico como o abaixo, usando o pacote ggplot2.

Há, por suposto, uma nítida recuperação do saldo entre admitidos e demitidos. Na ponta e sem ajuste, foram gerados esse ano 539.640 postos líquidos de trabalho com carteira assinada. Isso é uma boa notícia, obviamente, para um mercado de trabalho que ainda sofre os efeitos de uma das maiores recessões da nossa História.

Olhando para o mesmo item na PNAD Contínua, isto é, a população ocupada com carteira assinada, o ritmo de recuperação ainda se mostra bastante lento, com alguns recuos na margem, como é possível notar no gráfico abaixo.

O estoque de ocupados com carteira vem caindo desde junho nessa pesquisa. Na margem, por suposto, a recuperação da população ocupada vem sendo liderada pelos ocupados sem carteira e pelos "conta-própria", como é possível verificar na abertura desse grupo, como no gráfico abaixo.

Vem daí, por suposto, os vetores que tem impulsionado uma queda (lenta) da taxa de desocupação, como pode ser visto no gráfico a seguir.

CAGED e PNAD Contínua têm metodologias e abordagens distintas, obviamente, mas é curioso notar a discrepância entre uma e outra na margem. A acompanhar os próximos meses...

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.