Dessazonalizando os dados do CAGED com o R

O governo divulgou nessa semana os dados do Cadastro Geral de Empregados e Desempregados, o famoso CAGED. Com efeito, vi muitas matérias na imprensa sobre o resultado negativo em março de saldo negativo de 43.196 entre admissões e demissões. O problema desse resultado é que, como vemos em nosso Curso de Análise de Conjuntura usando o R, ele está contaminado por um problema típico de séries temporais, chamado sazonalidade, isto é, um comportamento que se apresenta de forma regular ao longo dos anos.

Para ilustrar esse problema, coloco abaixo o saldo do CAGED, que peguei do IPEADATA com o pacote ecoseries.

É nítido no gráfico um comportamento regular da série ao longo dos anos, não é mesmo? Assim, de forma a fazer uma análise precisa do que está acontecendo com a série do CAGED, precisamos primeiro "limpar" a sazonalidade. No R, como vemos em nosso Curso de Análise de Conjuntura usando o R, podemos fazer isso através do pacote seasonal. Fazendo esse tratamento, obtemos os dados do CAGED dessazonalizados como abaixo.

Totalmente diferente, não é mesmo? Com esse gráfico podemos ver que o mercado de trabalho vem ensaiando uma recuperação desde 2015/2016. Ao mesmo tempo, podemos ver que na ponta, de fato, março foi mesmo um mês ruim. A última vez que a série dessazonalizada tinha apresentado um mês negativo havia sido em fevereiro do ano passado.

Essa, diga-se, é a forma correta de fazer a análise dos dados, que você aprende em nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Regimes da Política Monetária Brasileira com Markov Switching no Python

Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.

Como criar janelas móveis de séries temporais usando o Python

Janelas Móveis/Deslizantes, ou Rolling Windows, são termos frequentes na análise de séries temporais. Mas o que são e como aplicá-las no Python? Neste tutorial, mostramos como essa ferramenta é essencial para a análise de dados utilizando como exemplo a correlação móvel de ações brasileiras.

Como incorporar choques em cenários de previsão?

Neste exercício mostramos como incorar choques no cenário de variáveis exógenas para fins de previsão. Usando como exemplo a previsão do IPCA, através de um modelo de machine learning, mostramos os cuidados a serem tomados e uma forma simples de definir o cenário com os choques. Ao final, apresentamos uma previsão com um suposto choque e uma previsão sem o choque para comparação.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.