Dessazonalizando os dados do CAGED com o R

O governo divulgou nessa semana os dados do Cadastro Geral de Empregados e Desempregados, o famoso CAGED. Com efeito, vi muitas matérias na imprensa sobre o resultado negativo em março de saldo negativo de 43.196 entre admissões e demissões. O problema desse resultado é que, como vemos em nosso Curso de Análise de Conjuntura usando o R, ele está contaminado por um problema típico de séries temporais, chamado sazonalidade, isto é, um comportamento que se apresenta de forma regular ao longo dos anos.

Para ilustrar esse problema, coloco abaixo o saldo do CAGED, que peguei do IPEADATA com o pacote ecoseries.

É nítido no gráfico um comportamento regular da série ao longo dos anos, não é mesmo? Assim, de forma a fazer uma análise precisa do que está acontecendo com a série do CAGED, precisamos primeiro "limpar" a sazonalidade. No R, como vemos em nosso Curso de Análise de Conjuntura usando o R, podemos fazer isso através do pacote seasonal. Fazendo esse tratamento, obtemos os dados do CAGED dessazonalizados como abaixo.

Totalmente diferente, não é mesmo? Com esse gráfico podemos ver que o mercado de trabalho vem ensaiando uma recuperação desde 2015/2016. Ao mesmo tempo, podemos ver que na ponta, de fato, março foi mesmo um mês ruim. A última vez que a série dessazonalizada tinha apresentado um mês negativo havia sido em fevereiro do ano passado.

Essa, diga-se, é a forma correta de fazer a análise dos dados, que você aprende em nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Criar um Agente Analista Financeiro com LangGraph e Dados da CVM

Este post apresenta a construção de um sistema multiagente para análise financeira automatizada com LangGraph. A partir dos dados das demonstrações contábeis da CVM, mostramos como agentes especializados podem interpretar perguntas, consultar bancos de dados e gerar análises financeiras, simulando o trabalho de um analista.

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

Como criar um Agente de IA coletor de dados

A tecnologia de agentes de IA está democratizando o acesso e a manipulação de dados econômicos complexos, tornando-a acessível mesmo para aqueles sem experiência em programação. Neste post discutimos a criação de agentes de IA para coletar dados econômicos brasileiros usando linguagem natural, como "Qual é a expectativa do IPCA para 2025?".

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.