Para onde vai a taxa de desemprego?

A taxa de desemprego atingiu 11,3% da População Economicamente Ativa (PEA) no trimestre móvel encerrado em junho, informou a Pesquisa Nacional por Amostra de Domicílios Contínua. Esse valor é três pontos percentuais maior do que o registrado em junho do ano passado. Ou seja, no período, 3,2 milhões de pessoas foram adicionadas ao desemprego. Nesse post, fazemos um exercício de previsão da taxa para os próximos meses.


grafico02

O gráfico acima detalha a evolução da taxa de desemprego medida pela PNAD Contínua, comparando a mesma no mês t contra o mês t-12. Observa-se que nos dois últimos meses, maio e junho, nessa comparação, houve uma pequena queda. Isso pode ser um sinal de que a alta do desemprego esteja próxima de um teto. Para buscar inferir o comportamento da taxa de desemprego no restante do ano, vamos construir um modelo BVAR, utilizando a variação interanual da população ocupada e da população economicamente ativa.

grafico01

Um aumento da população ocupada, naturalmente, faz com que a taxa de desemprego caia. De outra forma, um aumento da população economicamente ativa exerce pressão sobre a taxa. No período recente, uma combinação entre queda da PO e aumento da PEA tem pressionado o desemprego, gerando o cenário descrito acima.

grafico03

grafico04

Nesse contexto, de forma a avaliar como a taxa de desemprego evoluirá no restante do ano, resolvemos construir um modelo multivariado com essas três variáveis. Com o modelo construído, ademais, podemos verificar as funções de impulso resposta, como abaixo.

grafico05

Elas, por suposto, confirmam a intuição. Choques na PEA geram efeito positivo sobre o desemprego, enquanto choques na PO geram efeito negativo. Uma vez ratificado a relação entre as variáveis, podemos construir as trajetórias previstas, como abaixo.

grafico06

As projeções pontuais e médias são postas na tabela abaixo.

point.desemprego point.pea point.po mean.desemprego mean.pea mean.po
1 11.52 -1.58 1.83 11.52 -1.58 1.83
2 11.71 -1.63 1.83 11.72 -1.64 1.83
3 11.90 -1.69 1.83 11.92 -1.69 1.82
4 12.10 -1.75 1.85 12.12 -1.74 1.81
5 12.29 -1.80 1.84 12.33 -1.79 1.79
6 12.48 -1.86 1.84 12.53 -1.83 1.76

O modelo projeta que a taxa de desemprego ainda piorará ao longo de 2016, saindo de 11,3% em junho para 12,5% em dezembro. Um aumento de cerca de 1 ponto percentual na taxa equivale a adicionar algo próximo a um milhão de pessoas no desemprego. Ou seja, se o modelo estiver correto, ainda vai piorar, antes de melhorar... 🙁

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Medindo o Hiato do Produto do Brasil usando Python

Uma medida extremamente importante para a avaliação econômica de um país é o Hiato do Produto. Neste post, realizamos uma comparação das diferentes formas de estimação dessa variável não observável utilizando o Python como ferramenta de análise de dados.

Como analisar a contribuição para a Volatilidade de uma carteira de ações usando Python

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

Analisando o impacto fiscal de propostas legislativas com IA

Todos os anos milhares de proposições legislativas são geradas na Câmara dos Deputados e Senado Federal, o que dificulta o trabalho de monitoramento feito por economistas, jornalistas e analistas de mercado. No entanto, ao empregar técnicas de engenharia de prompt e IA, podemos analisar estas milhares de proposições em questão de segundos. Neste exercício mostramos o caminho para esta automatização usando o Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.