Análise da Produção Industrial com o R

Na última terça-feira, 03/09, o IBGE divulgou o resultado da Produção Industrial referente a julho. A indústria geral registrou queda de 0,3% em relação ao mês anterior e de 2,5% em relação ao mesmo mês de 2018. No acumulado em 12 meses a produção industrial registra queda de 1,3%. No nosso Curso de Análise de Conjuntura usando o R, a propósito, temos um script que faz uma apresentação automática da Produção Industrial. Ele começa carregando os seguintes pacotes.


library(ggplot2)
library(sidrar)
library(xtable)
library(forecast)
library(grid)
library(png)
library(gridExtra)

Uma vez carregados os pacotes que utilizaremos na apresentação, podemos importar os dados do SIDRA/IBGE com o pacote sidrar. O código abaixo implementa.


# Importação dos dados
table1 = get_sidra(api='/t/3653/n1/all/v/3134,3135/p/all/c544/all/d/v3134%201,v3135%201')
table2 = get_sidra(api='/t/3651/n1/all/v/3134,3135/p/all/c543/129278,129283,129300,129301,129305/d/v3134%201,v3135%201')

O código acima pega as tabelas 3651 e 3653 do SIDRA. A partir disso, nós tratamos os dados e geramos tabelas e gráficos de modo a compreender os resultados da pesquisa. Para ilustrar, abaixo colocamos o gráfico da indústria geral, sob diferentes métricas.

O script completo bem como videoaula detalhada está disponível para todos os alunos do Curso de Análise de Conjuntura usando o RAs inscrições para a Turma de Primavera estão abertas!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.