Decompondo o PIB com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

Com a divulgação do PIB essa semana (analisado aqui), podemos atualizar a participação dos três grandes setores da economia no valor adicionado (lembre-se que o PIB é calculado, pela ótica da produção como sendo o valor bruto de produção menos o consumo intermediário, isto é, o valor adicionado). No quarto trimestre de 2016, o setor de serviços foi responsável por 73,30% do valor adicionado, enquanto a indústria ficou com 21,24% e a agropecuária com 5,45%. O gráfico abaixo apresenta a evolução dessa participação ao longo do tempo.

Observa-se que o setor de serviços tem ganhado espaço no valor adicionado, tendo como contrapartida a perda de participação da indústria. Ademais, é importante lembrar que para chegar ao PIB propriamente dito, precisaremos adicionar os impostos, saindo assim de preços básicos para preços de mercado (ou do consumidor).

Podemos, a propósito, ver também a participação dos componentes da demanda, isto é, a famosa identidade

(1)   \begin{equation*} Y = C + I + G + X - M \end{equation*}

Onde C é o Consumo das Famílias, I é o Investimento, G é o Consumo do Governo, X representa as exportações e M as importações. Lembre-se que aqui o investimento é dividido em Formação Bruta de Capital Fixo (FBCF) e Variação de Estoques. O gráfico é colocado abaixo.

Observa-se que o Consumo das Famílias é o componente com maior participação, seguido do Consumo do Governo e do Investimento. A participação do Setor Externo (X-M) é residual na economia brasileira. No quarto trimestre de 2016, o consumo das famílias representou 64,01% do PIB, enquanto a FBCF foi de 16,38%. Abaixo, a propósito, colocamos um gráfico da taxa de investimento da economia brasileira.

Na margem, como ilustra a área hachurada, a FBCF despencou, causando uma queda da taxa de investimento...

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="Linha"][et_pb_column type="1_3"][/et_pb_column][et_pb_column type="1_3"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2017/02/CLUBE.png" show_in_lightbox="off" url="https://analisemacro.com.br/clube-do-codigo/" url_new_window="off" use_overlay="off" animation="left" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid" /][/et_pb_column][et_pb_column type="1_3"][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como treinar e selecionar os melhores modelos de previsão no Python?

Em previsão, há uma infinidade de modelos que podem ser usados. O processo de escolha do(s) modelo(s) deve ser empírico-científico, usando métodos que visem avaliar a generalização dos algoritmos para dados novos. Neste artigo, mostramos como implementar a metodologia de validação cruzada com algoritmos de machine learning no Python, exemplificando para a previsão do IPCA.

Como selecionar variáveis para modelos de previsão no Python?

Em oposição à crença popular, grande parte dos modelos de machine learning não produzem previsões magicamente. É papel do cientista de dados executar uma boa engenharia de variáveis para não cair no clássico problema de “garbage in, garbage out” (GIGO) em aprendizado de máquina. Neste sentido, aprender a fazer uma boa seleção de variáveis é fundamental e neste artigo exploramos algumas possibilidades práticas usando o Python.

Resultado IPCA-15 - Novembro/2024

A Análise Macro apresenta os resultados do IPCA-15 de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.