IBC-Br: Recuperação mais do que comprometida

O Banco Central acabou de divulgar os resultados do Índice de Nível de Atividade da instituição - o IBC-Br - referente ao mês de fevereiro. Nada animadores, diga-se. Pelo segundo mês seguido, a variação na margem veio negativa: 0,73% em relação a janeiro. Também na variação da média móvel trimestral - últimos três meses contra os três meses imediatamente anteriores - houve recuo de 0,21%. Uma indicação de que a recuperação da economia nesse ano está bastante comprometida.

Aprenda a analisar o IBC-Br e vários outros índices no Curso de Análise de Conjuntura usando o R 

Nas métricas mais suavizadas, por seu turno, ainda há crescimento positivo. A variação interanual, o IBC-Br cresceu 2,49% em fevereiro, enquanto no acumulado em 12 meses registra alta de 1,21%.

O pessimismo captado pelo IBC-Br, a propósito, se soma à sétima redução semanal do crescimento previsto para 2019 captado no boletim Focus. No último dado disponível, espera-se crescimento de 1,95%.

O pessimismo está em grande parte associado à possibilidade de não aprovação da reforma da previdência ou à aprovação de uma reforma bem mais desidratada do que a versão entregue pelo governo ao Congresso.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Medindo o Hiato do Produto do Brasil usando Python

Uma medida extremamente importante para a avaliação econômica de um país é o Hiato do Produto. Neste post, realizamos uma comparação das diferentes formas de estimação dessa variável não observável utilizando o Python como ferramenta de análise de dados.

Como analisar a contribuição para a Volatilidade de uma carteira de ações usando Python

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

Analisando o impacto fiscal de propostas legislativas com IA

Todos os anos milhares de proposições legislativas são geradas na Câmara dos Deputados e Senado Federal, o que dificulta o trabalho de monitoramento feito por economistas, jornalistas e analistas de mercado. No entanto, ao empregar técnicas de engenharia de prompt e IA, podemos analisar estas milhares de proposições em questão de segundos. Neste exercício mostramos o caminho para esta automatização usando o Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.