IBC-Br: Recuperação mais do que comprometida

O Banco Central acabou de divulgar os resultados do Índice de Nível de Atividade da instituição - o IBC-Br - referente ao mês de fevereiro. Nada animadores, diga-se. Pelo segundo mês seguido, a variação na margem veio negativa: 0,73% em relação a janeiro. Também na variação da média móvel trimestral - últimos três meses contra os três meses imediatamente anteriores - houve recuo de 0,21%. Uma indicação de que a recuperação da economia nesse ano está bastante comprometida.

Aprenda a analisar o IBC-Br e vários outros índices no Curso de Análise de Conjuntura usando o R 

Nas métricas mais suavizadas, por seu turno, ainda há crescimento positivo. A variação interanual, o IBC-Br cresceu 2,49% em fevereiro, enquanto no acumulado em 12 meses registra alta de 1,21%.

O pessimismo captado pelo IBC-Br, a propósito, se soma à sétima redução semanal do crescimento previsto para 2019 captado no boletim Focus. No último dado disponível, espera-se crescimento de 1,95%.

O pessimismo está em grande parte associado à possibilidade de não aprovação da reforma da previdência ou à aprovação de uma reforma bem mais desidratada do que a versão entregue pelo governo ao Congresso.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como analisar o sentimento dos textos do COPOM no Python?

Neste exercício construímos um indicador que busca quantificar o sentimento proveniente das decisões de política monetária no Brasil. Usando técnicas de mineração de texto, implementamos todas as etapas necessárias, desde web scraping e pré-processamento das atas do Comitê de Política Monetária do Banco Central (COPOM), até a criação de tokens e a classificação do sentimento implícito nos textos.

Como importar os textos do COPOM para análise de sentimentos no Python?

Os textos divulgados pelo COPOM, sejam os comunicados ou atas, são o ponto de partida para diversos tipos de análises quantitativas, como a análise de sentimentos, e qualitativas, como uma análise de cenário econômico. Neste artigo, mostramos como coletar estes textos de forma automatizada usando web scrapping e Python.

Como tratar dados no Python? Parte 5: renomeando colunas

Como dar novos nomes significativos para as colunas em uma tabela de dados usando Python? Neste tutorial mostramos os métodos de renomeação de colunas disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.