Indústria decepciona em novembro

Os dados da indústria referentes a novembro divulgados agora há pouco pelo IBGE acabaram vindo pior do que o esperado pelo mercado. Houve queda de 1,2% na comparação com outubro e de 1,7% na comparação interanual. Com efeito, o trimestre móvel encerrado em novembro acabou mostrando queda de 0,1% na comparação com o trimestre móvel encerrado em outubro. A produção industrial conta com script automático que é ensinado/disponibilizado no nosso Curso de Análise de Conjuntura usando o R. A tabela abaixo resume os números principais da indústria geral.

Métricas da Indústria Geral (%)
Mensal Interanual Trimestral Anual
2019 Sep 0,2 1,0 0,4 -1,3
2019 Oct 0,8 1,1 0,7 -1,3
2019 Nov -1,2 -1,7 -0,1 -1,3

Os dados da produção industrial estão disponíveis no SIDRA do IBGE. Para pegá-los, nós podemos utilizar o pacote sidrar como abaixo.


library(sidrar)
# Importação dos dados
table1 = get_sidra(api='/t/3653/n1/all/v/3134,3135/p/all/c544/all/d/v3134%201,v3135%201')
table2 = get_sidra(api='/t/3651/n1/all/v/3134,3135/p/all/c543/129278,129283,129300,129301,129305/d/v3134%201,v3135%201')

Com a função get_sidra() nós podemos pegar os dados da produção industrial referentes às categorias econômicas atividades industriais. A função, contudo, retorna um data frame bagunçado, que precisa ser tratado para que consigamos ter uma matriz onde cada coluna representa uma variável e cada linha seja uma observação, que nesse caso é uma observação mensal - uma série temporal mensal. Há várias formas de coletar os dados e construir um data frame, tibble ou mesmo matriz limpas. Abaixo, dou o exemplo mais simples para pegar os dados da indústria geral com ajuste sazonal.


geral_sa = table1$Valor[table1$`Variável (Código)`==3134 & table1$`Seções e atividades industriais (CNAE 2.0) (Código)`==129314]

É possível automatizar a busca com um loop, de modo a coletar todos as variáveis que você deseja. Em seguida, podemos criar um tibble como no código a seguir.


# As tibble
dates = seq(as.Date('2002-01-01'), ultima, by='1 month')
data_tl = tibble(dates, geral, extrativa, transform, bk, bi, bc, bcd,
bcnd)
data_sa_tl = tibble(dates, geral_sa, extrativa_sa, transform_sa, bk_sa,
bi_sa, bc_sa, bcd_sa, bcnd_sa)

A seguir, podemos construir um gráfico da produção industrial geral com ajuste sazonal restrita a dezembro de 2016 para frente com o uso da função filter() do pacote dplyr.


filter(data_sa_tl, dates > '2016-12-01') %>%
ggplot(aes(x=dates, y=geral_sa))+
annotate("rect", fill = "lightblue", alpha = 0.7,
xmin = as.Date('2019-07-01'),
xmax = as.Date('2019-11-01'),
ymin = -Inf, ymax = Inf)+
geom_line(size=.8, colour='darkblue')+
scale_x_date(breaks = date_breaks("2 month"),
labels = date_format("%b/%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
plot.title = element_text(size=12, colour='darkblue',
face='bold'))+
labs(x='', y='',
title='Produção Industrial Geral (com ajuste sazonal)',
caption='Fonte: analisemacro.com.br com dados do IBGE')

Por fim, o gráfico...

Como é possível verificar pelo gráfico, a indústria abortou a recuperação que vinha sendo ensaiada nos últimos meses. É, de fato, o setor que mais tem sentido os choques dos últimos meses.

O script, a propósito, segue com a análise por categorias e atividades da indústria.

_____________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar um Agente de IA coletor de dados

A tecnologia de agentes de IA está democratizando o acesso e a manipulação de dados econômicos complexos, tornando-a acessível mesmo para aqueles sem experiência em programação. Neste post discutimos a criação de agentes de IA para coletar dados econômicos brasileiros usando linguagem natural, como "Qual é a expectativa do IPCA para 2025?".

Como Criar um Agente Analista para Dados da Inflação com LangGraph

Este post mostra como automatizar a análise da inflação brasileira com o uso de agentes inteligentes. Utilizando o LangGraph, integramos dados do IPCA, núcleos de inflação e grupos do índice para criar um sistema capaz de gerar análises econômicas automatizadas com base em consultas em linguagem natural.

Como Criar um Agente para Análise da Atividade Econômica com LangGraph

Este post mostra como automatizar a análise da atividade econômica brasileira com agentes inteligentes. Utilizando o framework LangGraph e dados do IBGE e Banco Central, construímos um sistema capaz de gerar respostas analíticas a partir de perguntas em linguagem natural, unindo automação de consultas SQL e interpretação econômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.