Levando o Relatório de Inflação para o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

O R pode ser uma ferramenta poderosa para quem lida com análise de textos. Em minhas atividades de pesquisa, por exemplo, há a construção de índices de comunicação do Banco Central, onde preciso classificar determinadas palavras em classes de "potência" da política monetária. Isto é, se um determinado conjunto de palavras for mais citado do que outro, é possível dizer se a política monetária será mais expansionista, contracionista ou neutra. Agora, imagine o trabalho que dá fazer isso na mão? Pois é. O R é uma baita ajuda nessa empreitada.

Para ilustrar esse processo de mineração de textos (ou text mining) de forma simples aqui, vamos construir uma wordcloud do relatório de inflação divulgado nessa manhã.  Para isso, em primeiro lugar preciso levar o relatório para o R. Para fazer isso, eu vou usar o pacote pdftools, como abaixo.

library(pdftools)
download.file("http://www.bcb.gov.br/htms/relinf/port/2017/03/ri201703P.pdf", 
 "ri201703P.pdf", mode = "wb")
ri = pdf_text("ri201703P.pdf")

Uma vez que tenhamos o relatório no R, agora podemos operar a "mágica". Para isso, vamos fazer uso do pacote tm, uma biblioteca específica para text mining. Carregamos o pacote e colocamos nosso objeto ri na estrutura de um corpus, a classe de variável utilizada pelo pacote.

library(tm)
text_corpus = Corpus(VectorSource(ri))

Feito isso, podemos agora usar a função tm_map() para modificar o conteúdo do nosso corpus. Para detalhes, ver a documentação do pacote.

corpus_clean = tm_map(text_corpus, stripWhitespace)
corpus_clean = tm_map(corpus_clean, removeNumbers)
corpus_clean = tm_map(corpus_clean, PlainTextDocument)
corpus_clean = tm_map(corpus_clean, removePunctuation) 
corpus_clean = tm_map(corpus_clean, removeWords, stopwords('pt')) 

E, por fim, podemos usar o pacote wordcloud para enfim construir nossa wordcloud... 

library(wordcloud)
wordcloud(corpus_clean, max.words=150, random.order=FALSE, 
 colors=brewer.pal(8,"Dark2"))

O resultado é bastante simples. Mas imagine agora as possibilidades do text mining com uma ferramenta tão poderosa quanto o R? 🙂

 

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/introducao-ao-r/" url_new_window="off" button_text="Curso de Introdução ao R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][et_pb_column type="1_2"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/analise-de-conjuntura/" url_new_window="off" button_text="Análise de Conjuntura usando o R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Onde encontrar dados e ferramentas para text mining?

A aplicação das técnicas de mineração de texto pode trazer análises quantitativas informativas sobre a emoção, tom, categoria e outros padrões de interesse em documentos textuais. O primeiro passo é identificar, coletar e preparar estes dados brutos. Neste artigo, apresentamos bases de dados públicas de Economia e Finanças que podem ser exploradas, assim como ferramentas de programação úteis.

O que é mineração de textos e sua relação com IA?

Com uma matéria prima em comum, a mineração de textos e a inteligência artificial generativa usam grandes volumes de dados não estruturados para fins distintos e com aplicações em Economia, Finanças, Marketing e outras áreas. Mas quando devemos usar uma técnica e não a outra? O que é possível fazer e o que é mineração de textos? Neste artigo introduzimos estes tópicos e fornecemos alguns exemplos de aplicações.

Avaliando a evolução do Funcionalismo Público nos Estados Brasileiros usando Controle Sintético no R

O objetivo deste exercício é introduzir o uso do método de Controle Sintético na linguagem de programação R, aplicando-o a um exemplo prático relevante para a análise de políticas públicas. Vamos focar na utilização dessa técnica para avaliar o impacto do Regime de Recuperação Fiscal (RRF) sobre o número de vínculos do poder executivo nos estados brasileiros, com ênfase no caso do Rio de Janeiro.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.