Levando o Relatório de Inflação para o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

O R pode ser uma ferramenta poderosa para quem lida com análise de textos. Em minhas atividades de pesquisa, por exemplo, há a construção de índices de comunicação do Banco Central, onde preciso classificar determinadas palavras em classes de "potência" da política monetária. Isto é, se um determinado conjunto de palavras for mais citado do que outro, é possível dizer se a política monetária será mais expansionista, contracionista ou neutra. Agora, imagine o trabalho que dá fazer isso na mão? Pois é. O R é uma baita ajuda nessa empreitada.

Para ilustrar esse processo de mineração de textos (ou text mining) de forma simples aqui, vamos construir uma wordcloud do relatório de inflação divulgado nessa manhã.  Para isso, em primeiro lugar preciso levar o relatório para o R. Para fazer isso, eu vou usar o pacote pdftools, como abaixo.

library(pdftools)
download.file("http://www.bcb.gov.br/htms/relinf/port/2017/03/ri201703P.pdf", 
 "ri201703P.pdf", mode = "wb")
ri = pdf_text("ri201703P.pdf")

Uma vez que tenhamos o relatório no R, agora podemos operar a "mágica". Para isso, vamos fazer uso do pacote tm, uma biblioteca específica para text mining. Carregamos o pacote e colocamos nosso objeto ri na estrutura de um corpus, a classe de variável utilizada pelo pacote.

library(tm)
text_corpus = Corpus(VectorSource(ri))

Feito isso, podemos agora usar a função tm_map() para modificar o conteúdo do nosso corpus. Para detalhes, ver a documentação do pacote.

corpus_clean = tm_map(text_corpus, stripWhitespace)
corpus_clean = tm_map(corpus_clean, removeNumbers)
corpus_clean = tm_map(corpus_clean, PlainTextDocument)
corpus_clean = tm_map(corpus_clean, removePunctuation) 
corpus_clean = tm_map(corpus_clean, removeWords, stopwords('pt')) 

E, por fim, podemos usar o pacote wordcloud para enfim construir nossa wordcloud... 

library(wordcloud)
wordcloud(corpus_clean, max.words=150, random.order=FALSE, 
 colors=brewer.pal(8,"Dark2"))

O resultado é bastante simples. Mas imagine agora as possibilidades do text mining com uma ferramenta tão poderosa quanto o R? 🙂

 

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/introducao-ao-r/" url_new_window="off" button_text="Curso de Introdução ao R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][et_pb_column type="1_2"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/analise-de-conjuntura/" url_new_window="off" button_text="Análise de Conjuntura usando o R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Analisando a Volatilidade de Longo Prazo do Ibovespa usando Python

Com base no modelo GARCH(1,1), realizamos realizar a modelagem da variância condicional dos log retornos diários do Ibovespa, abrangendo o período de janeiro de 2018 até dezembro de 2023. O objetivo principal é compreender a implementação desse modelo utilizando a linguagem de programação Python, além de conduzir uma análise do mercado acionário brasileiro ao longo do período amostral.

Ao concluirmos este exercício, teremos a capacidade de obter uma medida representativa da variância de longo prazo da série temporal. Essa medida poderá ser comparada com a variância histórica, permitindo-nos inferir se a volatilidade presente está atualmente inferior ou superior àquela projetada para o futuro. Essa análise contribuirá para uma melhor compreensão da dinâmica da volatilidade no mercado acionário brasileiro.

Construindo uma NAIRU para o Brasil usando Python

Um dos maiores desafios para aqueles que trabalham com dados econômicos é aliar a prática com a teoria. Para tanto, o uso do Python pode facilitar esse desafio, permitindo construir todos os passos de uma análise de dados. Demonstramos o poder da linguagem tomando como exemplo a construção da NAIRU para o Brasil.

A Abordagem do Estudo de Eventos usando Python

A maioria das pesquisas em finanças está dedicada a investigar o efeito de um anúncio da companhia ou de um evento, sistêmico ou não, sobre o preço de uma ação. Esses estudos são conhecidos como “estudos de eventos”. Neste contexto, apresentaremos uma breve introdução à metodologia e demonstraremos como aplicá-la por meio de exemplos reais utilizando a linguagem de programação Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.