Levando o Relatório de Inflação para o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

O R pode ser uma ferramenta poderosa para quem lida com análise de textos. Em minhas atividades de pesquisa, por exemplo, há a construção de índices de comunicação do Banco Central, onde preciso classificar determinadas palavras em classes de "potência" da política monetária. Isto é, se um determinado conjunto de palavras for mais citado do que outro, é possível dizer se a política monetária será mais expansionista, contracionista ou neutra. Agora, imagine o trabalho que dá fazer isso na mão? Pois é. O R é uma baita ajuda nessa empreitada.

Para ilustrar esse processo de mineração de textos (ou text mining) de forma simples aqui, vamos construir uma wordcloud do relatório de inflação divulgado nessa manhã.  Para isso, em primeiro lugar preciso levar o relatório para o R. Para fazer isso, eu vou usar o pacote pdftools, como abaixo.

library(pdftools)
download.file("http://www.bcb.gov.br/htms/relinf/port/2017/03/ri201703P.pdf", 
 "ri201703P.pdf", mode = "wb")
ri = pdf_text("ri201703P.pdf")

Uma vez que tenhamos o relatório no R, agora podemos operar a "mágica". Para isso, vamos fazer uso do pacote tm, uma biblioteca específica para text mining. Carregamos o pacote e colocamos nosso objeto ri na estrutura de um corpus, a classe de variável utilizada pelo pacote.

library(tm)
text_corpus = Corpus(VectorSource(ri))

Feito isso, podemos agora usar a função tm_map() para modificar o conteúdo do nosso corpus. Para detalhes, ver a documentação do pacote.

corpus_clean = tm_map(text_corpus, stripWhitespace)
corpus_clean = tm_map(corpus_clean, removeNumbers)
corpus_clean = tm_map(corpus_clean, PlainTextDocument)
corpus_clean = tm_map(corpus_clean, removePunctuation) 
corpus_clean = tm_map(corpus_clean, removeWords, stopwords('pt')) 

E, por fim, podemos usar o pacote wordcloud para enfim construir nossa wordcloud... 

library(wordcloud)
wordcloud(corpus_clean, max.words=150, random.order=FALSE, 
 colors=brewer.pal(8,"Dark2"))

O resultado é bastante simples. Mas imagine agora as possibilidades do text mining com uma ferramenta tão poderosa quanto o R? 🙂

 

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/introducao-ao-r/" url_new_window="off" button_text="Curso de Introdução ao R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][et_pb_column type="1_2"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/analise-de-conjuntura/" url_new_window="off" button_text="Análise de Conjuntura usando o R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Frameworks para criar AI Agents

Neste post, vamos dar o primeiro passo rumo à construção de Agentes de IA mais sofisticados, capazes de tomar decisões, interagir com ferramentas externas e lidar com tarefas complexas. Para isso, precisamos entender o papel dos frameworks agenticos (ou agentic frameworks) e como eles podem facilitar esse processo. Aqui introduzimos dois frameworks populares de desenvolvimento de Agentes de IA.

Construindo RAG para Análise do COPOM com SmolAgents

Este exercício demonstra, passo a passo, como aplicar o conceito de Retrieval-Augmented Generation (RAG) com agentes inteligentes na análise de documentos econômicos. Utilizando a biblioteca SmolAgents, desenvolvemos um agente capaz de interpretar e responder a perguntas sobre as atas do COPOM com base em buscas semânticas.

Como criar um Agente de IA?

Unindo conhecimentos sobre Tools, LLMs e Vector Stores, agora é hora de integrar diferentes conceitos e aprender a construir um Agente de IA completo. Neste post, nosso objetivo será criar um Agente capaz de responder perguntas sobre o cenário macroeconômico brasileiro, utilizando dados de expectativas de mercado do Boletim Focus do Banco Central do Brasil (BCB) e o framework LangChain no Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.