IBGE admite erro na PNAD

IBGE admite erro na PNAD 2013. Segundo nota oficial da instituição: "No processo de expansão da amostra da PNAD 2013, foi utilizada, equivocadamente, a projeção de população referente a todas as áreas metropolitanas em vez da projeção de população da Região Metropolitana na qual está inserida a capital."  Com efeito, ao invés de aumento, houve [levíssima] queda na desigualdade em 2013. O pior momento para um erro desses, viu. E, sinceramente, eu não acredito que tenha ocorrido interferência política nesse caso, mas muita gente vai por esse caminho. Provavelmente se lembrarão dos problemas que ocorreram em pesquisa no IPEA recentemente. É o pior momento para um erro desses, principalmente porque mexeu em um dado sensível para a campanha da candidatura oficial. Prevejo teorias de conspiração nascendo nesse momento. Maiores detalhes, aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Calculando o impulso de crédito no Python

Qual é o papel do crédito no crescimento da economia? Para analisar esta questão, calculamos o indicador de impulso de crédito para a economia brasileira e comparamos com o nível da atividade econômica usando o Python.

Analisando a Volatilidade de Longo Prazo do Ibovespa usando Python

Com base no modelo GARCH(1,1), realizamos realizar a modelagem da variância condicional dos log retornos diários do Ibovespa, abrangendo o período de janeiro de 2018 até dezembro de 2023. O objetivo principal é compreender a implementação desse modelo utilizando a linguagem de programação Python, além de conduzir uma análise do mercado acionário brasileiro ao longo do período amostral.

Ao concluirmos este exercício, teremos a capacidade de obter uma medida representativa da variância de longo prazo da série temporal. Essa medida poderá ser comparada com a variância histórica, permitindo-nos inferir se a volatilidade presente está atualmente inferior ou superior àquela projetada para o futuro. Essa análise contribuirá para uma melhor compreensão da dinâmica da volatilidade no mercado acionário brasileiro.

Construindo uma NAIRU para o Brasil usando Python

Um dos maiores desafios para aqueles que trabalham com dados econômicos é aliar a prática com a teoria. Para tanto, o uso do Python pode facilitar esse desafio, permitindo construir todos os passos de uma análise de dados. Demonstramos o poder da linguagem tomando como exemplo a construção da NAIRU para o Brasil.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.