Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!
Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.
A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.
A teoria econômica convencional sugere a presença de um trade-off entre inflação e desemprego no curto prazo, comumente conhecido como a Curva de Phillips. Em termos simples, reduções na taxa de desemprego podem resultar em um aumento temporário na inflação. Nesse contexto, a inflação de serviços emerge como uma categoria particularmente relevante devido às suas características distintivas. Para explorar e visualizar a relação entre inflação de serviços e desemprego, conduzimos uma análise utilizando a linguagem de programação Python. Além disso, empregamos o procedimento de Toda-Yamamoto para avaliar a existência de uma relação de causalidade no sentido Granger entre essas variáveis.
comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002
Criação Kamus – Hospedagem HostWP
como podemos ajudar?
Preencha os seus dados abaixo e fale conosco no WhatsApp
Boletim AM
Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.