Analisando o nível de atividade econômica do Brasil usando Python

Introdução

Como criar uma análise de dados do nível de atividade econômica do Brasil, passando pelas etapas de importação e tratamentos dos dados e sua a exploração e visualização? Mostramos nesta postagem o poder do Python para a construção de diversos tipos de formas de analisar indicadores importantes para a conjuntura econômica brasileira.

Realizamos uma breve análise dos seguintes indicadores: PIB e seus componentes; PMS; PMC Ampliado; PIM-PF (Ind. Geral) e IBC-br, em suas diferentes medidas (taxas de variação). Apresentamos os resultados em gráficos e tabelas.

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvida.

Resumo dos dados do PIB

Número Índice

Variações do PIB

PIB e seus componentes

Atividade Econômica por Setor

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Tendência de Mercado com IA usando Python

Ler notícias diárias sobre empresas e ações listadas na bolsa pode ser maçante e cansativo. Mas, e se houvesse uma maneira de simplificar todo esse processo? Mostraremos como a IA generativa pode ajudar a captar o sentimento de notícias sobre companhias, automatizando todo o processo com Python e Gemini.

Análise de Sentimento de Mercado com IA usando Python

Ler notícias diárias sobre empresas e ações listadas na bolsa pode ser maçante e cansativo. Mas, e se houvesse uma maneira de simplificar todo esse processo? Mostraremos como a IA generativa pode ajudar a captar o sentimento de notícias sobre companhias, automatizando todo o processo com Python e Gemini.

Analisando o mercado acionário brasileiro com aprendizado não supervisionado no Python

Como identificar os fatores significativos que influenciam a variabilidade nos retornos de ações individuais? Como comparar esses fatores ao selecionar empresas de setores distintos? Neste artigo, aplicamos a Análise de Componentes Principais para examinar ações que compõem o índice bovespa, com o objetivo de identificar os fatores estatísticos relevantes. Usamos o Python como ferramenta para aplicar a análise.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.