Ancoragem de Expectativas no Python

Expectativas ancoradas, significando a manutenção da inflação em torno de um valor próximo da meta, inclusive após a ocorrência de choques relevantes, tornam menos custosa a ação do Banco Central no combate a pressões inflacionárias. No post de hoje, verificamos a ancoragem de expectativas para diferentes horizontes utilizando o Python como ferramenta para a construção do exercício.

O Boletim Focus permite extrair as expectativas de agentes para diferentes horizontes de diferentes indicadores, incluindo o IPCA, medida oficial de inflação no Brasil. A cada período de tempo, os agentes divulgam os valores que entendem que será o indicador no futuro em diferentes horizontes, e que tal valor, obviamente se altera, devido a mudanças de condições da economia.

Expectativas Ancoradas significam que o valor dessas expectativas estejam, no horizonte relevante, próximo da meta de inflação ou mesmo constantes durante o período de referência, principalmente a do ano corrente, que tem efeito sobre os horizonte futuros. Entretanto, quando há a ocorrência de mudanças súbitas nos valores das expectativas de IPCA, temos portanto, surpresas inflacionárias, e consequentemente a desancoragem de expectativas.

Para estimar uma medida de sensibilidade a surpresas inflacionárias, devemos verificar o impacto que variações nas expectativas para o ano corrente provocam sobre as expectativas para prazos mais longos. Na presença de expectativas bem ancoradas, deve haver baixa relação (co-movimento) entre as expectativas de inflação de longo prazo e as de curto prazo, em que estas últimas capturariam surpresas inflacionárias.

Em termos econométricos, essa sensibilidade é calculada a partir do coeficiente \beta, de acordo com a equação abaixo:

    \[\Delta \pi_t^{e,h} = \alpha + \beta^h \Delta \pi_t^{e,0} + \epsilon_t\]

onde h = 1, ... , 4 é o horizonte (em anos) para o qual foram formadas as expectativas.

Portanto, quanto maior o coeficiente \beta menos ancoradas as expectativas, ou seja, maior a resposta das expectativas de longo prazo a surpresas inflacionárias. Como o interesse é na evolução deste coeficiente ao longo do tempo, as estimações são realizadas a partir de janelas móveis de 60 meses.

Construção do modelo econométrico no Python

Para obter todo o código do processo de criação do modelo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

Para a construção do exercício utilizamos o Python, seguindo etapas relativas ao processo de análise de dados. Estas etapas são:

1. Carregamento das bibliotecas do Python;
2. Coleta e tratamento dos dados das expectativas de inflação anuais;
3. Especificação e ajuste do modelo econométrico em janelas deslizantes de 60 meses;
4. Visualização do coeficiente \beta extraído do modelo.

A partir das etapas acima, temos como resultado o gráfico abaixo, que demonstra o coeficiente \beta estimado, ou seja, medida de sensibilidade a surpresas inflacionárias.

Veja que para facilitar o entendimento das surpresas, foi extraído o coeficiente para diferentes horizontes, bem como foi elencado no gráfico os mandatos de cada presidente do Banco Central após 2007: Henrique Meirelles, Tombini, Ilan Goldafajn e RCN, permitindo a comparação e o entendimento da ancoragem em diferentes períodos.

A partir dos resultados, é possível realizar a análise que se deseja para diferentes horizontes e tomar conclusões sobre os acontecimentos da conjuntura do período, bem como as decisões dos presidentes na época.

_____________________________________
Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada  e aprenda a criar projetos voltados para a Macroeconomia.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar o Google AI Studio e o Gemini?

Na corrida da IA, novas ferramentas e modelos são lançados quase que diariamente. Neste artigo mostramos como o Google tem competido neste mercado através do AI Studio e do Gemini e damos um exemplo de integração em Python.

Analisando a ancoragem das expectativas de inflação no Python

Se expectativas de inflação ancoradas com a meta são importantes para a economia, analisar o grau de ancoragem é imperativo para economistas e analistas de mercado. Neste exercício mostramos uma forma de aplicar esta análise com uma metodologia desenvolvida pelo FMI. Desde a coleta dos dados, passando pelo modelo e pela visualização de dados, mostramos como analisar a política monetária usando o Python.

Como analisar a DRE de empresas de capital aberto usando o Python

Quando analisamos a demonstração de resultados de uma empresa listada na bolsa de valores, frequentemente recorremos a ferramentas convencionais, que embora sejam úteis, muitas vezes carecem de automação. É aqui que entra o Python. Neste post, exploramos o poder do Python para automatizar o processo de coleta, tratamento e análise dos dados da Demonstração do Resultado do Exercício (DRE) da Eletrobras, utilizando dados fornecidos pela CVM (Comissão de Valores Mobiliários).

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.