Ancoragem de Expectativas no Python

Expectativas ancoradas, significando a manutenção da inflação em torno de um valor próximo da meta, inclusive após a ocorrência de choques relevantes, tornam menos custosa a ação do Banco Central no combate a pressões inflacionárias. No post de hoje, verificamos a ancoragem de expectativas para diferentes horizontes utilizando o Python como ferramenta para a construção do exercício.

O Boletim Focus permite extrair as expectativas de agentes para diferentes horizontes de diferentes indicadores, incluindo o IPCA, medida oficial de inflação no Brasil. A cada período de tempo, os agentes divulgam os valores que entendem que será o indicador no futuro em diferentes horizontes, e que tal valor, obviamente se altera, devido a mudanças de condições da economia.

Expectativas Ancoradas significam que o valor dessas expectativas estejam, no horizonte relevante, próximo da meta de inflação ou mesmo constantes durante o período de referência, principalmente a do ano corrente, que tem efeito sobre os horizonte futuros. Entretanto, quando há a ocorrência de mudanças súbitas nos valores das expectativas de IPCA, temos portanto, surpresas inflacionárias, e consequentemente a desancoragem de expectativas.

Para estimar uma medida de sensibilidade a surpresas inflacionárias, devemos verificar o impacto que variações nas expectativas para o ano corrente provocam sobre as expectativas para prazos mais longos. Na presença de expectativas bem ancoradas, deve haver baixa relação (co-movimento) entre as expectativas de inflação de longo prazo e as de curto prazo, em que estas últimas capturariam surpresas inflacionárias.

Em termos econométricos, essa sensibilidade é calculada a partir do coeficiente \beta, de acordo com a equação abaixo:

    \[\Delta \pi_t^{e,h} = \alpha + \beta^h \Delta \pi_t^{e,0} + \epsilon_t\]

onde h = 1, ... , 4 é o horizonte (em anos) para o qual foram formadas as expectativas.

Portanto, quanto maior o coeficiente \beta menos ancoradas as expectativas, ou seja, maior a resposta das expectativas de longo prazo a surpresas inflacionárias. Como o interesse é na evolução deste coeficiente ao longo do tempo, as estimações são realizadas a partir de janelas móveis de 60 meses.

Construção do modelo econométrico no Python

Para obter todo o código do processo de criação do modelo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

Para a construção do exercício utilizamos o Python, seguindo etapas relativas ao processo de análise de dados. Estas etapas são:

1. Carregamento das bibliotecas do Python;
2. Coleta e tratamento dos dados das expectativas de inflação anuais;
3. Especificação e ajuste do modelo econométrico em janelas deslizantes de 60 meses;
4. Visualização do coeficiente \beta extraído do modelo.

A partir das etapas acima, temos como resultado o gráfico abaixo, que demonstra o coeficiente \beta estimado, ou seja, medida de sensibilidade a surpresas inflacionárias.

Veja que para facilitar o entendimento das surpresas, foi extraído o coeficiente para diferentes horizontes, bem como foi elencado no gráfico os mandatos de cada presidente do Banco Central após 2007: Henrique Meirelles, Tombini, Ilan Goldafajn e RCN, permitindo a comparação e o entendimento da ancoragem em diferentes períodos.

A partir dos resultados, é possível realizar a análise que se deseja para diferentes horizontes e tomar conclusões sobre os acontecimentos da conjuntura do período, bem como as decisões dos presidentes na época.

_____________________________________
Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada  e aprenda a criar projetos voltados para a Macroeconomia.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como tratar dados no Python? Parte 2: filtrando linhas

Como filtrar somente as linhas que interessam em uma tabela de dados usando Python? Neste tutorial mostramos os métodos de filtros de linhas disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Criando IA Assistant usando Shiny no Python

Nesta postagem, ensinamos a como criar um chatbot interativo utilizando o Shiny Python. Veremos os principais conceitos sobre o módulo Chat do Shiny e como integrá-lo a modelos de IA generativa, como Gemini, para criar um chatbot funcional em poucos passos.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.