Fazendo Backtesting no Python

Imagine-se na seguinte situação: você cria uma estratégia de investimentos, baseadas em diversos fatores de risco de um conjunto de ações, bem como uma análise acurada de diversas outras classes de ativos. Porém, ainda falta uma forma de conseguir evidenciar se a estratégia pode de fato dar certo. Para isso, é possível realizar um Backtest através do Python.

Existem diversas métricas e indicadores possíveis de se utilizar para obter o conhecimento de o quanto uma estratégia de investimentos se comportou no passado. Dentre elas, as mais importantes seguem como:

  • Retorno Acumulado
  • Comparação com um benchmark
  • Drawdown - isto é - os períodos de queda do valor da ação
  • Distribuição do Retorno
  • Índice de Sharpe, entre outros índices
  • Volatilidade dos retornos
  • Beta

Existem diversos outros tipos de métricas, que seriam muito bem utilizadas para o propósito, sendo cada uma melhor atendendo os gostos de cada investidor a depender da estratégia.

Mas como podemos realizar todos estes testes utilizando o Python? É possível utilizar a biblioteca vectorbt, que oferece uma gama de funções para conseguir criar o Backtest.

Antes de continuar com o backtest, importaremos os dados para criar um estratégia da qual possamos analisar. Com a biblioteca PyPortfolioOpt, iremos criar um portfólio de fronteira eficiente de forma que consigamos criar uma estratégia e possamos avaliá-la com o vectorbt.

vectorbt

O vectorbt é um pacote do Python que permite realizar análises quantitativas, montagem de estratégias de investimentos e backtesting. O ponto do forte do pacote é justamente pela sua operação com outros pacotes para análises de dados do Python.

Abaixo, demonstraremos através do cálculo da fronteira eficiente de um portfólio de três ativos algumas funções úteis para obter métricas de backtesting utilizando o vectorbt.

Veja que após criar os pesos ótimos, utilizamos eles para realizar a alocação somente em um primeiro momento do portfólio, sem rebalanceamento. Em seguida, com o método stats, verificamos os principais indicadores e a comparação do benchmark (Ibovespa). É possível alterar diversas configurações dos indicadores utilizando o argumento settings.


Para os gráficos, vemos o plot para todos os subplots possíveis da função. Por óbvio, devido a estratégia montada, alguns não fariam sentido, apesar de serem úteis para diversas outras.

Quer saber mais?

Veja nossos cursos de Python aplicado: R e Python para Economistas, Econometria usando R e Python e Estatística usando R e Python

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que são LLMs?

Anteriormente, aprendemos que cada Agente precisa de um Modelo de IA em seu núcleo, e que os LLMs são o tipo mais comum de modelos de IA para esse propósito.

Agora, vamos aprender o que são LLMs e como eles impulsionam os Agentes. Esta seção oferece uma explicação técnica concisa sobre o uso de LLMs.

O que são Agentes de IA?

O que é um agente e como ele funciona? Como agentes tomam decisões usando racioncínio e planejamento? Neste artigo, nosso objetivo é investigar estas questões para construir um conhecimento fundamental sobre AI agents.

As diferentes formas de avaliar o erro de um modelo de previsão

Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.