Regressões Quantílicas

No nosso Curso de Microeconometria usando o R, nosso objetivo é capacitar alunos de graduação e pós-graduação, professores e profissionais de mercado em econometria aplicada a microdados. O curso envolve tanto a apresentação teórica de modelos de regressão, quanto a aplicação no R de diversos exemplos associados a dados de corte transversal, séries de tempo e dados em painel. Espera-se que ao final do Curso o aluno tenha facilidade em desenvolver trabalhos empíricos empregando microdados.

Para ilustrar, vamos considerar hoje uma das aulas do Curso, envolvendo Regressões Quantílicas.

Regressões que utilizam o método de mínimos quadrados modelam a média condicional de uma variável de interesse. Isto é, E(Y|X), o valor esperado de y dado um vetor x. Às vezes, entretanto, podemos estar interessados em outras características da distribuição condicional, como por exemplo a mediana ou, de forma mais geral, os quantis.

O modelo de regressão quantílica pela função quantílica condicional

(1)   \begin{align*} Q_y (\tau|x) = x_{i}^{T} \beta ; \end{align*}

i.e., Q_y (\tau|x) denota o quantil \tau de y condicionado a x. As estimativas são então obtidas minimizando \sum_{i} \varrho_{\tau} (y_i - x_{i}^{T} \beta) com respeito a \beta, onde para \tau \in (0,1), \varrho_{\tau} denota a função linear por partes \varrho_{\tau} = u {\tau - I (u < 0)}, sendo I a função indicativa.

De modo a ilustrar a aplicação da regressão quantílica no R, vamos estimar o seguinte modelo:

(2)   \begin{align*} Q_{log(wage)} (\tau|x) = \beta_1 + \beta_2 experience + \beta_3 experience^2 + \beta_4 education  \end{align*}

Para estimar 2, nós recorremos à função `rq` do pacote `quantreg` e ao dataset **CPS1988**, como abaixo. Por default, `rq` seta \tau = 0.5, isto é, a mediana de y.


library(quantreg)
library(AER)
data('CPS1988')
cps_f <- log(wage) ~ experience + I(experience^2) + education
cps_lad <- rq(cps_f, data = CPS1988)

A seguir, o output da regressão.

Dependent variable:
log(wage)
experience 0.077***
(0.001)
I(experience2) -0.001***
(0.00003)
education 0.094***
(0.001)
Constant 4.241***
(0.022)
Observations 28,155
Note: *p<0.1; **p<0.05; ***p<0.01

A regressão quantílica é particularmente interessante quanto modelamos vários quantis de forma simultânea, como abaixo. Para isso, basta setar o argumento tau da função.


cps_rq <- rq(cps_f, tau = c(0.25, 0.75), data = CPS1988)

Uma questão natural derivada desse tipo de análise é se as linhas ou superfícies de regressão são paralelas; ou seja, se os efeitos dos regressores são uniformes nos quantis. Existe o método `anova()` para explorar esta questão.


cps_rq25 <- rq(cps_f, tau = 0.25, data = CPS1988)
cps_rq75 <- rq(cps_f, tau = 0.75, data = CPS1988)
anova(cps_rq25, cps_rq75, joint = FALSE)

Observamos que o efeito não é uniforme ao longo dos quantis, com as diferenças estando associadas ao coeficiente da **experiência**. Podemos ver essa diferença de modo gráfico com o código a seguir.


cps_rqbig <- rq(cps_f, tau = seq(0.05, 0.95, by = 0.05), data = CPS1988)
cps_rqbigs <- summary(cps_rqbig)
plot(cps_rqbigs)

Com isso, visualizamos a variação dos coeficientes em função de \tau, sendo bastante claro que a influência das covariáveis está longe de ser uniforme. As áreas sombreadas representam intervalos de confiança pontuais de 90% (por padrão) para as estimativas da regressão quantílica. Para comparação, as linhas horizontais sólidas e tracejadas mostradas em cada gráfico representam a estimativa do OLS e um intervalo de confiança de 90% associado.

_________

(*) Cadastre-se aqui na nossa Lista VIP para receber um super desconto na abertura das Turmas 2021.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.