1º Semana de 2020 é agitada em indicadores

Abaixo, você vê tudo o que foi publicado na AM ao longo da semana:

- [#Indicadores] Análise do 1º Boletim Focus de 2020
- [#ComentáriodeConjuntura] Estimando um modelo de correção de erros entre a Produção de Veículos e a Produção Industrial
- [#DicasdeR] Começando a programar com o R
- [#Python] Começando a programar com Python
- [#PIB] Indústria decepciona em novembro
- [#Inflação] Núcleos de Inflação seguem bem comportados

E fique ligado: as inscrições para as Turmas 2020.1 dos nossos Cursos Aplicados de R começam no próximo dia 21/01! Clique aqui e conheça nossos Cursos!

Venha com a gente para o mundo da análise de dados!!! 🙂

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como avaliar modelos de IA na previsão macroeconômica?

Descubra como economistas e cientistas de dados estão combinando econometria e inteligência artificial para aprimorar previsões macroeconômicas. Neste post, você vai entender as principais etapas de avaliação de modelos — da preparação dos dados à validação cruzada — e conhecer as métricas e técnicas que revelam quais métodos realmente entregam as melhores previsões. Uma leitura essencial para quem quer compreender o futuro da análise econômica orientada por dados.

Análise exploratória e seleção de séries temporais econômicas para modelagem

Quer entender como transformar dados econômicos brutos em previsões macroeconômicas precisas? Neste post, mostramos passo a passo como realizar a análise exploratória e seleção de séries temporais com Python — desde o tratamento de dados e remoção de multicolinearidade até a escolha das variáveis mais relevantes usando técnicas de machine learning e econometria. Um guia essencial para quem quer unir teoria econômica e inteligência artificial na prática da previsão macroeconômica.

Transformers para Análise de Séries Temporais

Neste tutorial, mostramos passo a passo como aplicar dados de séries temporais em modelos baseados na arquitetura Transformer, utilizando a biblioteca Darts no Python. Você aprenderá como transformar dados temporais em um formato compatível, ajustar o modelo e gerar previsões. Uma introdução prática e didática à união entre Deep Learning e análise de séries temporais.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.