Pirâmide etária da vacinação

A vacinação tem avançado de forma acelerada no país. Em muitos regiões, já estamos vacinando as pessoas na casa dos 30 anos. Apesar disso, ainda deve levar algum tempo até uma parcela considerável da população estar plenamente imunizada.

Inspirado em um tweet que vi a algum tempo, resolvi replicar essa visualização bastante interessante, que mostra a quantidade de vacinados em relação à população por meio de uma pirâmide etária.

Como os microdados da vacinação para todo o país geram um arquivo muito grande, optei por selecionar apenas dos dados do Paraná. Os dados de vacinação estão disponíveis aqui. Seguindo o código abaixo, é possível construir o mesmo gráfico para qualquer um dos estados.


library(tidyverse)
library(sidrar)

dados = read.csv2("vacina_PR.csv")

Os dados de população serão obtidos por meio da PNAD contínua anual de 2019, com o pacote *sidrar*. Para o gráfico ficar no formato de pirâmide, iremos alterar o valor das mulheres para ser negativo.

piramide = get_sidra(6706, 
variable = 606, 
geo = "State",
geo.filter = list("State" = 41)) %>%
filter(Sexo != "Total") %>%
mutate(`Grupo de idade` = ifelse(`Grupo de idade` == "5 a 9 anos",
"05 a 9 anos",
`Grupo de idade`),
Valor = ifelse(Sexo == "Mulheres",-Valor, Valor))

 

Primeiramente, iremos selecionar apenas as primeiras doses. A mesma visualização pode ser feita para a segunda dose, alterando essa linha. Como os dados de população estão disponíveis por faixas de renda, iremos colocar os dados de vacinação nestas faixas. Assim, agrupamos por faixa de idade e gênero para contar as pessoas. Da mesma forma que fizemos para a população, também iremos tornar a quantidade de mulheres negativa.


dados_g = dados %>%
filter(str_replace_all(vacina_descricao_dose, "[^[:alnum:]]", " ") == "1ª Dose") %>%
mutate(`Grupo de idade` = case_when(paciente_idade < 5 ~ "0 a 4 anos",
paciente_idade > 4 & paciente_idade < 10 ~ "05 a 9 anos",
paciente_idade > 9 & paciente_idade < 15 ~ "10 a 14 anos",
paciente_idade > 14 & paciente_idade < 20 ~ "15 a 19 anos",
paciente_idade > 19 & paciente_idade < 25 ~ "20 a 24 anos",
paciente_idade > 24 & paciente_idade < 30 ~ "25 a 29 anos",
paciente_idade > 29 & paciente_idade < 35 ~ "30 a 34 anos",
paciente_idade > 34 & paciente_idade < 40 ~ "35 a 39 anos",
paciente_idade > 39 & paciente_idade < 45 ~ "40 a 44 anos",
paciente_idade > 44 & paciente_idade < 50 ~ "45 a 49 anos",
paciente_idade > 49 & paciente_idade < 55 ~ "50 a 54 anos",
paciente_idade > 54 & paciente_idade < 60 ~ "55 a 59 anos",
paciente_idade > 59 & paciente_idade < 65 ~ "60 a 64 anos",
paciente_idade > 64 & paciente_idade < 70 ~ "65 a 69 anos",
paciente_idade > 69 & paciente_idade < 75 ~ "70 a 74 anos",
paciente_idade > 74 & paciente_idade < 80 ~ "75 a 79 anos",
paciente_idade > 79 ~ "80 anos ou mais")) %>%
group_by(`Grupo de idade`, paciente_enumsexobiologico) %>%
tally() %>%
filter(paciente_enumsexobiologico %in% c("M", "F")) %>%
mutate(n = ifelse(paciente_enumsexobiologico == "F", -n, n),
paciente_enumsexobiologico = ifelse(paciente_enumsexobiologico == "F",
"Mulheres",
"Homens"))

Assim, basta fazer o gráfico de pirâmide etária com dois "geom_bar". O primeiro é o de população, que fica no fundo. Já o segundo é o de dados da vacinação.

ggplot() +
geom_bar(data=piramide, 
aes(y=Valor*1000, x = `Grupo de idade`, fill = Sexo), 
stat="identity", alpha = 0.4, width=1) +
geom_bar(data=dados_g, 
aes(y=n, x = `Grupo de idade`, fill = paciente_enumsexobiologico),
stat="identity", width=1) +
scale_fill_manual(values = c("#c23c3c", "#276f9c", "#276f9c", "#c23c3c")) +
coord_flip() +
theme_classic() +
ggtitle("Pirâmide etária de vacinados com a primeira dose no Paraná",
subtitle="Com dados do dia 14/07/2021") +
scale_y_continuous(labels = abs) +
ylab("Número de pessoas") 

 

________________________
(*) Para entender mais sobre a linguagem R e como analisar dados, confira nosso Curso de Introdução ao R para análise de dados.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Aplicando o Time Series Transformer para prever inflação (IPCA)

Neste exercício, exploramos a previsão de séries temporais utilizando o Temporal Fusion Transformer (TFT). O TFT é uma arquitetura de Deep Learning baseada em mecanismos de atenção, desenhada especificamente para lidar com múltiplas variáveis e horizontes de previsão longos, mantendo a interpretabilidade — uma característica frequentemente ausente em modelos de "caixa-preta".

Análise do Payroll norte-americano com Python

O Payroll norte-americano é o termômetro da economia global. No post de hoje, mostro como analisar esse indicador usando Python e as bibliotecas Pandas e Plotnine. Saia do básico e aprenda a visualizar a geração de empregos nos EUA de forma profissional.

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.