Tag

análise de ações com o r Archives - Análise Macro

Visualizando os preços de ações com o R

By | mercado financeiro

Nosso objetivo no Curso Mercado Financeiro e Gestão de Portfólios é o de proporcionar tanto uma introdução dos alunos ao mercado financeiro quanto o de munir os mesmos com ferramentas analíticas para gestão de portfólios e tratamento/visualização de dados. Para ilustrar, vamos ver como é possível coletar dados de preços de ações a partir da base de dados online do Yahoo Finance e visualizar os mesmos com o pacote ggplot2.

Com o código a seguir, nós estamos pegando os preços das ações da Petrobras, Ambev, Magazine Luíza e Via Varejo.


library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)

symbols = c('PETR4.SA', 'ABEV3.SA', 'MGLU3.SA', 'VVAR3.SA')
prices = getSymbols(symbols, src='yahoo',
from='2019-01-01',
to='2020-04-20',
warning=FALSE) %>%
map(~Cl(get(.))) %>%
reduce(merge) %>%
`colnames<-` (symbols) %>%
tk_tbl(preserve_index = TRUE,
rename_index = 'date') %>%
drop_na()

Observe que o código já trata os dados, tanto colocando os mesmos em um tibble quanto eliminando os valores faltantes (missing values). Feito isso, podemos criar um gráfico de linhas com o pacote ggplot2.


filter(prices, date > '2019-09-01') %>%
ggplot(aes(x=date))+
geom_line(aes(y=PETR4.SA, colour='PETR4'))+
geom_line(aes(y=ABEV3.SA, colour='ABEV3'))+
geom_line(aes(y=MGLU3.SA, colour='MGLU3'))+
geom_line(aes(y=VVAR3.SA, colour='VVAR3'))+
scale_colour_manual('',
values=c('PETR4'='blue',
'ABEV3'='red',
'MGLU3'='orange',
'VVAR3'='green'))+
scale_x_date(breaks = date_breaks("14 days"),
labels = date_format("%d/%b"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
legend.position = 'bottom')+
labs(x='', y='R$',
title='Preços de ações brasileiras selecionadas',
caption='Fonte: analisemacro.com.br com dados do Yahoo Finance')

A partir daí, podemos criar os retornos das ações e partir para a construção do nosso portfólio.

Você as colocaria no seu?

________________

(*) Isso e muito mais você irá aprender no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios.

Transformando preços em log-retornos mensais com o R tidyquant

By | Hackeando o R

No post anterior, eu mostrei como é possível coletar os preços de ações com o R através do pacote quantmod, utilizando a base de dados do Yahoo Finance. Essa representação dos dados, contudo, não é a mais conveniente para a gestão de portfólios, como veremos no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios. Para fins de construção de portfólios, é conveniente usarmos os retornos ou log-retornos dos ativos. De fato, uma grande parte dos estudos financeiros envolve retorno, ao invés de preço, de ativos. Isto porque, retorno de ativos pode ser um completo sumário para oportunidades de investimento, bem como séries de retorno são mais fáceis de lidar do que séries de preço porque aquelas possuem propriedades estatísticas mais atrativas.

Há, entretanto, diversas definições de retorno de ativos. Tomando P_t como o preço de um ativo no tempo t, considerando que a princípio o ativo não paga dividendos, ao manter um ativo por um período de t-1 a t, isso resultaria em um retorno bruto simples de

(1)   \begin{align*} 1 + R_t = \frac{P_t}{P_{t-1}} \end{align*}

O retorno líquido ou simples então será de

(2)   \begin{align*} R_t = \frac{P_t}{P_{t-1}} - 1 = \frac{P_t - P_{t-1}}{P_{t-1}} \end{align*}

Já o logaritmo natural do retorno bruto simples de um ativo é chamado de retorno composto continuamente ou simplesmente log-retorno:

(3)   \begin{align*} r_t = \text{ln} (1+R_t) = \text{ln} \frac{P_t}{P_{t-1}} = p_t - p_{t-1} \end{align*}

onde p_t = ln (P_t).  A seguir, pegamos nossas ações coletadas no post anterior e calculamos os log-retornos mensais com o pacote tidyquant.


library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)

prices = getSymbols(symbols, src='yahoo',
from='2019-01-01',
to='2020-04-20',
warning=FALSE) %>%
map(~Cl(get(.))) %>%
reduce(merge) %>%
`colnames<-` (symbols) %>%
tk_tbl(preserve_index = TRUE,
rename_index = 'date') %>%
drop_na()

returns = prices %>%
gather(asset, prices, -date) %>%
group_by(asset) %>%
tq_transmute(mutate_fun = periodReturn,
period='monthly',
type='log') %>%
spread(asset, monthly.returns) %>%
select(date, symbols)

A seguir, construímos um gráfico desses retornos.


ggplot(returns, aes(x=date))+
geom_line(aes(y=PETR4.SA, colour='PETR4'))+
geom_line(aes(y=ABEV3.SA, colour='ABEV3'))+
geom_line(aes(y=MGLU3.SA, colour='MGLU3'))+
geom_line(aes(y=VVAR3.SA, colour='VVAR3'))+
scale_colour_manual('',
values=c('PETR4'='blue',
'ABEV3'='red',
'MGLU3'='orange',
'VVAR3'='green'))+
scale_x_date(breaks = date_breaks("1 month"),
labels = date_format("%b/%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
legend.position = 'bottom',
plot.title = element_text(size=10, face='bold'))+
labs(x='', y='',
title='Log-Retornos mensais de ações brasileiras selecionadas',
caption='Fonte: analisemacro.com.br com dados do Yahoo Finance')

Observa-se uma queda forte no mês de março por conta da pandemia do coronavírus, como era esperado.

(*) Isso e muito mais você irá aprender no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios.


Visualizando os preços de ações com o R

By | Hackeando o R

Nosso objetivo no novo Curso Mercado Financeiro e Gestão de Portfólios da área de finanças da Análise Macro será o de proporcionar tanto uma introdução dos alunos ao mercado financeiro quanto o de munir os mesmos com ferramentas analíticas para gestão de portfólios e tratamento/visualização de dados. Para ilustrar, vamos ver como é possível coletar dados de preços de ações a partir da base de dados online do Yahoo Finance e visualizar os mesmos com o pacote ggplot2.

Com o código a seguir, nós estamos pegando os preços das ações da Petrobras, Ambev, Magazine Luíza e Via Varejo.


library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)

symbols = c('PETR4.SA', 'ABEV3.SA', 'MGLU3.SA', 'VVAR3.SA')
prices = getSymbols(symbols, src='yahoo',
from='2019-01-01',
to='2020-04-20',
warning=FALSE) %>%
map(~Cl(get(.))) %>%
reduce(merge) %>%
`colnames<-` (symbols) %>%
tk_tbl(preserve_index = TRUE,
rename_index = 'date') %>%
drop_na()

Observe que o código já trata os dados, tanto colocando os mesmos em um tibble quanto eliminando os valores faltantes (missing values). Feito isso, podemos criar um gráfico de linhas com o pacote ggplot2.


filter(prices, date > '2019-09-01') %>%
ggplot(aes(x=date))+
geom_line(aes(y=PETR4.SA, colour='PETR4'))+
geom_line(aes(y=ABEV3.SA, colour='ABEV3'))+
geom_line(aes(y=MGLU3.SA, colour='MGLU3'))+
geom_line(aes(y=VVAR3.SA, colour='VVAR3'))+
scale_colour_manual('',
values=c('PETR4'='blue',
'ABEV3'='red',
'MGLU3'='orange',
'VVAR3'='green'))+
scale_x_date(breaks = date_breaks("14 days"),
labels = date_format("%d/%b"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
legend.position = 'bottom')+
labs(x='', y='R$',
title='Preços de ações brasileiras selecionadas',
caption='Fonte: analisemacro.com.br com dados do Yahoo Finance')

A partir daí, podemos criar os retornos das ações e partir para a construção do nosso portfólio.

Você as colocaria no seu?

(*) Isso e muito mais você irá aprender no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios.


Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente