Tag

aumento da incerteza Archives - Análise Macro

Flertando com a estagflação

By | Comentário de Conjuntura

Amanhã, o IBGE divulga o resultado do IPCA de maio. O consenso formado pela média suavizada do Focus indica uma variação de 0,7%, a mesma que indica o nosso modelo de previsão, conforme mostramos ontem no Relatório AM. Se for confirmado, a inflação acumulada em 12 meses romperá a casa dos 7% a.a. A despeito da boa notícia do PIB do 1º trimestre, o hiato do produto ainda encontra-se em terreno negativo, o que indica que estamos basicamente flertando com o que os economistas chamam de estagflaçãoaquele momento do ciclo onde temos inflação alta (ou em elevação, para ser mais claro) e estagnação econômica. Nesse Comentário de Conjuntura, vamos falar um pouco sobre o conceito.

(*) Aprenda a fazer esse tipo de análise através dos nossos Cursos Aplicados de R.

O comentário de conjuntura 22 começa carregando os seguintes pacotes:


library(tidyverse)
library(readxl)
library(rbcb)
library(forecast)
library(vars)
library(tstools)
library(latex2exp)
library(sidrar)
library(lubridate)
library(scales)
library(RcppRoll)
library(ggrepel)
library(seasonal)
library(zoo)

A seguir, pegamos os dados da inflação medida pelo IPCA, assim como os núcleos de inflação desenvolvidos e acompanhados pelo Banco Central.


## Criar Inflação mensal e acumulada em 12 meses
ipca_indice =
'/t/1737/n1/all/v/2266/p/all/d/v2266%2013' %>%
get_sidra(api=.) %>%
mutate(date = ymd(paste0(`Mês (Código)`, '01'))) %>%
dplyr::select(date, Valor) %>%
mutate(mensal = round((Valor/lag(Valor, 1)-1)*100, 2),
anual = round((Valor/lag(Valor, 12)-1)*100, 2))

## Criar amostra
ipca_subamostra = ipca_indice %>%
filter(date >= as.Date('2007-06-01'))

## Pegar núcleos
series = c(ipca_ex2 = 27838,
ipca_ex3 = 27839,
ipca_ms = 4466,
ipca_ma = 11426,
ipca_ex0 = 11427,
ipca_ex1 = 16121,
ipca_dp = 16122)

nucleos = get_series(series, start_date = '2006-07-01') %>%
purrr::reduce(inner_join)

nucleos_12m <- nucleos %>%
mutate(across(!date, (function(x) 1+x/100))) %>%
mutate(across(!date, (function(x) (roll_prod(x, n=12, align='right',
fill = NA)-1)*100 )))

data_nucleos_12 = nucleos_12m %>%
filter(date >= as.Date('2007-06-01'))

&nbsp;

## Inflação vs. Núcleos

meta = c(rep(4.5, 139), rep(4.25, 12),
rep(4, 12), rep(3.75, 12), rep(3.5, 12), rep(3.25, 12))
meta_max = c(rep(4.5+2, 115), meta[-(1:115)]+1.5)
meta_min = c(rep(4.5-2, 115), meta[-(1:115)]-1.5)

metas = tibble(lim_sup=meta_max, meta=meta,
lim_inf=meta_min)

media.nucleos <- rowMeans(dplyr::select(data_nucleos_12, -date))

df = tibble(nucleos = round(media.nucleos, 2),
lim_sup = head(metas$lim_sup, n = nrow(ipca_subamostra)),
meta = head(metas$meta, n = nrow(ipca_subamostra)),
lim_inf = head(metas$lim_inf, n = nrow(ipca_subamostra)),
inflacao = ipca_subamostra$anual,
date = data_nucleos_12$date)

Na sequência, plotamos o primeiro gráfico do comentário.

Como se pode ver, a inflação acumulada em 12 meses está acima do limite superior da meta, resultado de diversos choques que têm ocorrido sobre a economia brasileira desde o ano passado. O aumento de commodities está por trás tanto do aumento de alimentos quanto do aumento dos combustíveis, que afetam diretamente a inflação medida pelo IPCA.


url = 'https://www12.senado.leg.br/ifi/dados/arquivos/estimativas-do-hiato-do-produto-ifi/at_download/file'
download.file(url, destfile='hiato.xlsx', mode='wb')
hiato = read_excel('hiato.xlsx', sheet = 2, skip=1)

Em meio a esses choques, está um hiato do produto em recuperação, como se pode ver pela figura acima, produzida pela IFI. Ainda em terreno negativo (os dados vão até 2021Q4), o hiato respira por aparelhos em meio a uma sucessão de crises que assola a economia brasileira desde meados de 2014.

Inflação em aceleração em meio a um hiato do produto negativo é a definição de estagflação. Por um lado, a inflação aumenta por causa de choques que afetam a economia doméstica. Por outro, o ciclo econômico se mantém em baixa como consequência de alguma crise externa/interna.

É, basicamente, o pior dos mundos para o cenário macroeconômico, porque afeta em última instância a taxa de desemprego, como pode ser visto abaixo.


desemprego = get_sidra(api="/t/6381/n1/all/v/4099/p/all/d/v4099%201") %>%
mutate(date = parse_date(`Trimestre Móvel (Código)`, format='%Y%m')) %>%
dplyr::select(date, Valor) %>%
rename(desemprego = Valor) %>%
mutate(desemprego_sa = final(seas(ts(desemprego, start=c(2012,03),
freq=12)))) %>%
as_tibble()

A taxa de desemprego tem aumentado no Brasil desde 2014, como resultado da crise interna que vivemos à época. Passou por um momento de leve redução nos anos pré-pandemia e reagiu forte ao choque mundial provocado pela Covid-19.

Em outras palavras, o desemprego no Brasil mudou de nível e, dificilmente, voltará aos níveis de 2013/2014 no curto prazo. Isto porque, o desemprego é a última variável a reagir à melhora do ambiente econômico. Há muitos motivos para isso. Um deles é que o desemprego afeta o capital humano das pessoas. Quanto maior o tempo desemprego, maior a parte de capital humano, o que torna difícil para o trabalhador voltar ao mercado.

Dito isso, é bastante preocupante ver o comportamento do desemprego de longo prazo no Brasil, como pode ser visto abaixo.


table = get_sidra(api='/t/1616/n1/all/v/4092/p/all/c1965/all') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
dplyr::select(date, `Tempo de procura de trabalho`, Valor) %>%
spread(`Tempo de procura de trabalho`, Valor) %>%
as_tibble()

ratio = table %>%
mutate(across(!date, (function(x) x / Total *100))) %>%
dplyr::select(-Total)

ratio %>%
gather(variavel, valor, -date) %>%
ggplot(aes(x=date, y=valor, colour=variavel))+
geom_area(aes(colour=variavel, fill=variavel))+
theme(legend.title = element_blank(),
legend.position = 'left',
plot.title = element_text(size=8, face='bold'))+
scale_x_yearqtr(breaks= pretty_breaks(n=4), format="%YQ%q")+
labs(x='', y='',
title='Desemprego por tempo de procura por trabalho',
caption='Fonte: analisemacro.com.br com dados do IBGE')

O desemprego de mais de 2 anos tem aumentado de forma consistente nos últimos anos, como mostra a normalização pela PEA vista abaixo.

Os dados são da PNAD Trimestral, com o último dado disponível de 2020Q4.

Quanto maior o tempo da crise, maiores vítimas vão sendo acumuladas dentro do desemprego de longo prazo. A perda de capital humano, por suposto, afeta de forma direta o PIB Potencial da economia, com consequências não desprezíveis sobre o crescimento de longo prazo da economia brasileira.

(*) Aprenda a fazer esse tipo de análise através dos nossos Cursos Aplicados de R.

____________________

(**) Para quem quiser ter acesso a todos os códigos desse e de todos os exercícios que publicamos ao longo da semana, visite o Clube AM.

Consumo de Energia e Nowcasting do PIB

By | Comentário de Conjuntura

No dia 20 de abril, publiquei aqui nesse espaço a edição número 15 do Comentário de Conjuntura fazendo uma análise sobre o Consumo de Energia. Na minha visão, o fato da elasticidade entre a energia e o pib serem muito próximos da unidade significa que o PIB não teria tido um resultado ruim no 1º tri de 2021. Pelo contrário, o resultado deveria vir positivo, já que o Consumo de Energia havia continuado a toada da recuperação. Nesse Comentário de Conjuntura, com os dados divulgados ontem, vamos fazer uma análise detalhada da relação entre o PIB e o Consumo de energia elétrica, bem como apresentamos nosso modelo de nowcasting do PIB.

Os membros do Clube AM têm acesso a todos os códigos dos nossos exercícios!

Para começar, vamos comparar aqui o número índice do PIB dessazonalizado com o consumo de energia, também dessazonalizado.

As séries andam juntas e há, possivelmente, uma relação de cointegração entre elas. Uma vez consideradas as séries em nível, podemos ver a comparação das variações marginal, interanual e anual.

O fit entre as séries é impressionante, não é mesmo?


Esse fit continua também na variação interanual e na variação acumulada em 4 períodos, como pode ser vista abaixo.

A variação acumulada em 4 trimestres mostra uma relação forte entre as séries, com uma volta pronunciada do consumo na margem. Algo que ainda não ocorre com o PIB.

Para além dessa relação entre consumo de energia e movimentos do PIB, também estamos trabalhando aqui na AM em um modelo de nowcasting para o PIB, sob liderança do Vitor Pestana Ostrensky.

O resultado previsto para o 1º tri de 2021 foi de 1,22%, quando o ocorrido ficou em 1,2, na comparação com o trimestre imediatamente anterior.

Os resultados do modelo bem como a sua operacionalização serão divulgados nos próximos dias no Clube AM.

(*) Aprenda a fazer esse tipo de análise através dos nossos Cursos Aplicados de R.

____________________

Medindo o efeito da incerteza sobre o PIB Mensal

By | Comentário de Conjuntura

Mesmo após a redução dos níveis de incerteza vistos no ano passado, há ainda muito por percorrer para um patamar considerado aceitável. Uma elevação da incerteza, sabemos da teoria econômica, acaba por adiar investimentos e mesmo decisões de consumo de bens duráveis, o que tem efeitos não desprezíveis sobre o PIB. Nesse Comentário de Conjuntura, verificamos através de funções impulso-resposta como a incerteza afeta a variação acumulada em 12 meses do PIB mensal.

Para ilustrar o efeito da incerteza sobre o PIB, usamos as séries da Fundação Getúlio Vargas: o índice de incerteza econômica e o Monitor do PIB mensal.

Uma vez disponíveis as séries, nós verificamos se existe cointegração entre elas por meio da metodologia de Johansen. Rejeitada a hipótese nula de inexistência de cointegração, seguimos o protocolo de Johansen e não conseguimos rejeitar que existe ao menos um vetor de cointegração entre as séries.

Uma vez, então, construído o modelo VEC, nós transformamos o mesmo em um modelo VAR em nível e observamos o efeito de um impulso sobre a incerteza na variação acumulada em 12 meses do PIB mensal. O resultado é posto abaixo.

De fato, existe um efeito negativo do aumento da incerteza sobre a variação do PIB mensal, como esperado pela teoria econômica.

(*) Todos os detalhes do exercício estão disponíveis no Curso de Macroeconometria II da Análise Macro.

____________________

Medindo o efeito da incerteza sobre variáveis macroeconômicas

By | Macroeconometria

Na edição 52 do Clube do Código, ampliamos nosso entendimento sobre o efeito da incerteza sobre variáveis macroeconômicas. Utilizando um modelo BVAR com uma prévia de Minnesota, nós construímos funções impulso-resposta, dando ênfase a um impulso sobre a incerteza e a resposta no crescimento do PIB, nos juros e na inflação - saiba como construir esse tipo de análise em nosso Curso de Séries Temporais usando o R. Novamente, como proxy para a incerteza, utilizamos o Índice de Incerteza Econômica da Fundação Getúlio Vargas.

Acima, estão destacadas as funções impulso-resposta selecionadas. Como se observa, o efeito de um choque na incerteza sobre o crescimento da economia permanece sendo negativo, com o seu pico ocorrendo próximo a quatro trimestres do início. O efeito sobre a inflação - nesse caso a versão acumulada em 12 meses - não parece ser significativo. Já o efeito sobre a taxa básica de juros é, curiosamente, negativo; isto é, a evidência encontrada sugere que o Banco Central reduz juros na eminência de um choque de incerteza.

Todo o processo de coleta, tratamento, modelagem e apresentação dos dados (feita em RMarkdown) está detalhado na edição 52 do Clube do Código.

 

_____________________________________

Conheça nossos Cursos Aplicados de R e aprenda a coletar, tratar, analisar e apresentar dados com o R!

Medindo o efeito da incerteza sobre o crescimento do PIB

By | Macroeconometria

Na edição 21 do Clube do Código, fiz um exercício onde procurei identificar o efeito da incerteza sobre o crescimento do PIB por meio de funções impulso-resposta de um modelo BVAR. Como proxy para "incerteza" foi utilizado o índice da FGV e para o PIB o índice mensal também da FGV. A evidência encontrada à época sugeria que um aumento da incerteza - um choque na mesma para ser mais preciso - implicava em uma redução do crescimento do PIB - saiba como construir esse tipo de análise em nosso Curso de Séries Temporais usando o R.

Na edição 52 do Clube do Código, que estará disponível para os membros nos próximos dias, eu atualizo o exercício para os últimos dois anos, bem como verifico o impacto da incerteza em outras variáveis macroeconômicas, como inflação e taxa básica de juros. Nesse post, a propósito, faço uma breve exposição dos resultados encontrados no primeiro exercício.

As séries de incerteza e crescimento do PIB apresentam uma correlação negativa, como mostra o gráfico acima. De posse dessa avaliação preliminar, resolvemos estimar um BVAR, extraindo do modelo as funções de impulso-resposta, como abaixo.

Como pode ser observado pelas funções de impulso-resposta, a evidência encontrada sugere que um choque sobre a incerteza tem efeito negativo sobre o crescimento do PIB em um horizonte de ao menos 24 meses. Isso pode ser um bom candidato a explicar por que a recuperação da economia brasileira tem sido tão lenta nos últimos anos, em meio aos diversos conflitos políticos que tivemos, bem como o grave problema fiscal ainda não equacionado. Será que os dados mais atualizados confirmam essa posição? É o que veremos na próxima edição do Clube do Código!

_____________________________________

Conheça nossos Cursos Aplicados de R e aprenda a coletar, tratar, analisar e apresentar dados com o R!

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente